a=1.0 b=0.0 theta=0 # Step activation function # Constant 'theta' determines the level of neuron activation. # Parameter 'x' Weighted sum of initial data. def ActStep (x): return 1 if x>=theta else 0 # Linear activation function # Constant 'a' defines the angle of inclination of the line, and 'b' - the vertical offset of the line # Parameter 'x' Weighted sum of initial data. def ActLinear (x): return a*x+b # Sigmoid activation function # Constant 'a' stretches the range of values of the function from '0' to 'a' # Constant 'b' shifts the resulting value # Parameter 'x' Weighted sum of initial data. import math def ActSigmoid(x): return a/(1+math.exp(-x))-b # TANH activation function # Parameter 'x' Weighted sum of initial data. import math def ActTanh (x): return math.tanh(x) # PReLU activation function # Constant 'a' leak parameter # Parameter 'x' Weighted sum of initial data. def ActPReLU (x): return x if x>=0 else a*x # SoftMax activation function # Parameter 'X' array of weighted initial data. from scipy.special import softmax def ActSoftMax (X): return softmax(X)