//+------------------------------------------------------------------+ //| Weibull.mqh | //| Copyright 2000-2025, MetaQuotes Ltd. | //| https://www.mql5.com | //+------------------------------------------------------------------+ #include "Math.mqh" //+------------------------------------------------------------------+ //| Weibull probability density function (PDF) | //+------------------------------------------------------------------+ //| The function returns the probability density function | //| of the Weibull distribution with parameters a and b. | //| f(x,a,b)=[(a/b)*(x/b)^(a-1)]*exp(-(x/b)^a) | //| Arguments: | //| x : Random variable | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| log_mode : Logarithm mode flag, if true it returns Log values | //| error_code : Variable for error code | //| | //| Return value: | //| The probability density evaluated at x. | //+------------------------------------------------------------------+ double MathProbabilityDensityWeibull(const double x,const double a,const double b,const bool log_mode,int &error_code) { //--- f(-infinity)=f(infinity)=0 if(x==QPOSINF || x==QNEGINF) { error_code=ERR_OK; return TailLog0(true,log_mode); } //--- check parameters if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b)) { error_code=ERR_ARGUMENTS_NAN; return QNaN; } //--- a and b must be positive if(a<=0 || b<=0) { error_code=ERR_ARGUMENTS_INVALID; return QNaN; } error_code=ERR_OK; //--- check x if(x<=0) return TailLog0(true,log_mode); //--- calculate factor double pwr=MathPow(x/b,a-1); double pdf=(a/b)*pwr*MathExp(-(x/b)*pwr); if(log_mode==true) return MathLog(pdf); //--- return density return pdf; } //+------------------------------------------------------------------+ //| Weibull probability density function (PDF) | //+------------------------------------------------------------------+ //| The function returns the probability density function | //| of the Weibull distribution with parameters a and b. | //| f(x,a,b)=[(a/b)*(x/b)^(a-1)]*exp(-(x/b)^a) | //| Arguments: | //| x : Random variable | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| error_code : Variable for error code | //| | //| Return value: | //| The probability density evaluated at x. | //+------------------------------------------------------------------+ double MathProbabilityDensityWeibull(const double x,const double a,const double b,int &error_code) { return MathProbabilityDensityWeibull(x,a,b,false,error_code); } //+------------------------------------------------------------------+ //| Weibull probability density function (PDF) | //+------------------------------------------------------------------+ //| The function calculates the probability density function of the | //| Weibull distribution with parameters a and b for values in x[]. | //| | //| Arguments: | //| x : Array with random variables | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| log_mode : Logarithm mode flag, if true it returns Log values | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathProbabilityDensityWeibull(const double &x[],const double a,const double b,const bool log_mode,double &result[]) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) return false; //--- a and b must be positive if(a<=0 || b<=0) return false; int data_count=ArraySize(x); if(data_count==0) return false; int error_code=0; ArrayResize(result,data_count); for(int i=0; i0) | //| b : Scale parameter of the distribution (b>0) | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathProbabilityDensityWeibull(const double &x[],const double a,const double b,double &result[]) { return MathProbabilityDensityWeibull(x,a,b,false,result); } //+------------------------------------------------------------------+ //| Weibull cumulative distribution function (CDF) | //+------------------------------------------------------------------+ //| The function returns the probability that an observation | //| from the Weibull distribution with parameters a and b | //| is less than or equal to x. | //| | //| Arguments: | //| x : The desired quantile | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| tail : Flag to calculate lower tail | //| log_mode : Logarithm mode, if true it calculates Log values | //| error_code : Variable for error code | //| | //| Return value: | //| The value of the Weibull cumulative distribution function | //| F(a,b)=1-exp(-(x/b)^a) | //| with parameters a and b, evaluated at x. | //+------------------------------------------------------------------+ double MathCumulativeDistributionWeibull(const double x,const double a,const double b,const bool tail,const bool log_mode,int &error_code) { //--- f(-infinity)=0 if(x==QNEGINF) { error_code=ERR_OK; return TailLog0(tail,log_mode); } //--- f(+infinity)=1 if(x==QPOSINF) { error_code=ERR_OK; return TailLog1(tail,log_mode); } //--- check parameters if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b)) { error_code=ERR_ARGUMENTS_NAN; return QNaN; } //--- a and b must be positive if(a<=0 || b<=0) { error_code=ERR_ARGUMENTS_INVALID; return QNaN; } error_code=ERR_OK; //--- check x if(x<=0) return TailLog0(tail,log_mode); //--- calculate probability and take into account round-off errors double cdf=MathMin(1.0-MathExp(-MathPow(x/b,a)),1.0); return TailLogValue(cdf,tail,log_mode); } //+------------------------------------------------------------------+ //| Weibull cumulative distribution function (CDF) | //+------------------------------------------------------------------+ //| The function returns the probability that an observation | //| from the Weibull distribution with parameters a and b | //| is less than or equal to x. | //| | //| Arguments: | //| x : The desired quantile | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| error_code : Variable for error code | //| | //| Return value: | //| The value of the Weibull cumulative distribution function | //| F(a,b)=1-exp(-(x/b)^a) | //| with parameters a and b, evaluated at x. | //+------------------------------------------------------------------+ double MathCumulativeDistributionWeibull(const double x,const double a,const double b,int &error_code) { return MathCumulativeDistributionWeibull(x,a,b,true,false,error_code); } //+------------------------------------------------------------------+ //| Weibull cumulative distribution function (CDF) | //+------------------------------------------------------------------+ //| The function calculates the cumulative distribution function of | //| the Weibull distribution with parameters a and b for values in x.| //| | //| Arguments: | //| x : Array with random variables | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| tail : Flag to calculate lower tail | //| log_mode : Logarithm mode, if true it calculates Log values | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathCumulativeDistributionWeibull(const double &x[],const double a,const double b,const bool tail,const bool log_mode,double &result[]) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) return false; //--- a and b must be positive if(a<=0 || b<=0) return false; int data_count=ArraySize(x); if(data_count==0) return false; int error_code=0; ArrayResize(result,data_count); for(int i=0; i0) | //| b : Scale parameter of the distribution (b>0) | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathCumulativeDistributionWeibull(const double &x[],const double a,const double b,double &result[]) { return MathCumulativeDistributionWeibull(x,a,b,true,false,result); } //+------------------------------------------------------------------+ //| Weibull distribution quantile function (inverse CDF) | //+------------------------------------------------------------------+ //| The function returns the inverse cumulative distribution | //| function of Weibull distribution | //| Q(p,a,b)=b*((-ln(1-p)))^(1/a) | //| with parameters a and b for the desired probability. | //| | //| Arguments: | //| probability : The desired probability | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| tail : Flag to calculate for lower tail | //| log_mode : Logarithm mode,if true it calculates for Log values| //| error_code : Variable for error code | //| | //| Return value: | //| The value of the inverse cumulative distribution function | //| of the Weibull distribution with parameters a and b. | //+------------------------------------------------------------------+ double MathQuantileWeibull(const double probability,const double a,const double b,const bool tail,const bool log_mode,int &error_code) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) { error_code=ERR_ARGUMENTS_NAN; return QNaN; } //--- a and b must be positive if(a<=0 || b<=0) { error_code=ERR_ARGUMENTS_INVALID; return QNaN; } //--- calculate real probability double prob=TailLogProbability(probability,tail,log_mode); //--- check probability range if(prob<0.0 || prob>1.0) { error_code=ERR_ARGUMENTS_INVALID; return QNaN; } //--- f(1)=+infinity if(prob==1.0) { error_code=ERR_RESULT_INFINITE; return QPOSINF; } error_code=ERR_OK; //--- f(0)=0 if(prob==0.0) return 0.0; //--- return quantile return b*MathPow(-MathLog(1.0-prob),1.0/a); } //+------------------------------------------------------------------+ //| Weibull distribution quantile function (inverse CDF) | //+------------------------------------------------------------------+ //| The function returns the inverse cumulative distribution | //| function of the Weibull distribution | //| Q(p,a,b)=b*((-ln(1-p)))^(1/a) | //| with parameters a and b for the desired probability. | //| | //| Arguments: | //| probability : The desired probability | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| error_code : Variable for error code | //| | //| Return value: | //| The value of the inverse cumulative distribution function | //| of the Weibull distribution with parameters a and b. | //+------------------------------------------------------------------+ double MathQuantileWeibull(const double probability,const double a,const double b,int &error_code) { return MathQuantileWeibull(probability,a,b,true,false,error_code); } //+------------------------------------------------------------------+ //| Weibull distribution quantile function (inverse CDF) | //+------------------------------------------------------------------+ //| The function calculates the inverse cumulative distribution | //| function of the Weibull distribution with parameters a and b | //| for the probability values from array. | //| | //| Arguments: | //| probability : Array with probabilities | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| tail : Flag to calculate lower tail | //| log_mode : Logarithm mode, if true it calculates Log values | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathQuantileWeibull(const double &probability[],const double a,const double b,const bool tail,const bool log_mode,double &result[]) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) return false; //--- a and b must be positive if(a<=0 || b<=0) return false; int data_count=ArraySize(probability); if(data_count==0) return false; int error_code=0; ArrayResize(result,data_count); for(int i=0; i1.0) return false; //--- f(1)=+infinity if(prob==1.0) result[i]=QPOSINF; //--- f(0)=0 if(prob==0.0) result[i]=0.0; else //--- calc quantile result[i]=b*MathPow(-MathLog(1.0-prob),1.0/a); } return true; } //+------------------------------------------------------------------+ //| Weibull distribution quantile function (inverse CDF) | //+------------------------------------------------------------------+ //| The function calculates the inverse cumulative distribution | //| function of the Weibull distribution with parameters a and b | //| for values from the probability[] array. | //| | //| Arguments: | //| probability : Array with probabilities | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| result : Array with calculated values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathQuantileWeibull(const double &probability[],const double a,const double b,double &result[]) { return MathQuantileWeibull(probability,a,b,true,false,result); } //+------------------------------------------------------------------+ //| Random variate from the Weibull distribution | //+------------------------------------------------------------------+ //| Computes the random variable from the Weibull distribution | //| with shape a and scale b. | //| | //| Arguments: | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| error_code : Variable for error code | //| | //| Return value: | //| The random value with Weibull distribution. | //+------------------------------------------------------------------+ double MathRandomWeibull(const double a,const double b,int &error_code) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) { error_code=ERR_ARGUMENTS_NAN; return QNaN; } //--- a and b must be positive if(a<=0 || b<=0) { error_code=ERR_ARGUMENTS_INVALID; return QNaN; } error_code=ERR_OK; //--- generate random number double rnd=MathRandomNonZero(); return b*MathPow(-MathLog(rnd),1.0/a); } //+------------------------------------------------------------------+ //| Random variate from the Weibull distribution | //+------------------------------------------------------------------+ //| Generates random variables from the Weibull distribution with | //| parameters a and b. | //| | //| Arguments: | //| a : Shape parameter of the distribution (a>0) | //| b : Scale parameter of the distribution (b>0) | //| data_count : Number of values needed | //| result : Output array with random values | //| | //| Return value: | //| true if successful, otherwise false. | //+------------------------------------------------------------------+ bool MathRandomWeibull(const double a,const double b,const int data_count,double &result[]) { //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) return false; //--- a and b must be positive if(a<=0 || b<=0) return false; //--- prepare output array and calculate random values ArrayResize(result,data_count); for(int i=0; i0) | //| b : Scale parameter of the distribution (b>0) | //| mean : Variable for mean value (1st moment) | //| variance : Variable for variance value (2nd moment) | //| skewness : Variable for skewness value (3rd moment) | //| kurtosis : Variable for kurtosis value (4th moment) | //| error_code : Variable for error code | //| | //| Return value: | //| true if moments calculated successfully, otherwise false. | //+------------------------------------------------------------------+ bool MathMomentsWeibull(const double a,const double b,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code) { //--- default values mean =QNaN; variance=QNaN; skewness=QNaN; kurtosis=QNaN; //--- check NaN if(!MathIsValidNumber(a) || !MathIsValidNumber(b)) { error_code=ERR_ARGUMENTS_NAN; return false; } //--- a and b must be positive if(a<=0 || b<=0) { error_code=ERR_ARGUMENTS_INVALID; return false; } error_code=ERR_OK; //--- Gamma function values double g1 = MathGamma(1+1.0/a); double g2 = MathGamma(1+2.0/a); double g3 = MathGamma(1+3.0/a); double g4 = MathGamma(1+4.0/a); //--- calculate moments mean =b*g1; variance=b*b*g2-MathPow(g1,2); skewness=(2*g1*g1*g1-3*g1*g2+g3)*MathPow(g2-g1*g1,-1.5); kurtosis=(-6*MathPow(g1,4)+12*MathPow(g1,2)*g2-3*MathPow(g2,2)-4*g1*g3+g4)*MathPow(g2-g1*g1,-2); //--- successful return true; } //+------------------------------------------------------------------+