# -------------------------------------------------------# # Script for the creation and comparative testing of # # multiple models using one dataset. # # The script creates three models: # # - 2-dimensional convolutional layer # # - recurrent network with LSTM block # # - Multi-Head Self-Attention # # When training models, from training dataset, script # # allocates 1% to validate the outputs. # # After training, the script tests the performance # # of the model on a test dataset (separate data file) # # -------------------------------------------------------# # Import Libraries import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib as mp import matplotlib.pyplot as plt import matplotlib.font_manager as fm import MetaTrader5 as mt5 # Add fonts font_list=fm.findSystemFonts() for f in font_list: if(f.__contains__('ClearSans')): fm.fontManager.addfont(f) # Set parameters for output graphs mp.rcParams.update({'font.family':'serif', 'font.serif':'Clear Sans', 'axes.titlesize': 'x-large', 'axes.labelsize':'medium', 'xtick.labelsize':'small', 'ytick.labelsize':'small', 'legend.fontsize':'small', 'figure.figsize':[6.0,4.0], 'axes.titlecolor': '#707070', 'axes.labelcolor': '#707070', 'axes.edgecolor': '#707070', 'xtick.labelcolor': '#707070', 'ytick.labelcolor': '#707070', 'xtick.color': '#707070', 'ytick.color': '#707070', 'text.color': '#707070', 'lines.linewidth': 0.8, 'axes.linewidth': 0.5 }) # Connect to the MetaTrader 5 terminal if not mt5.initialize(): print("initialize() failed, error code =",mt5.last_error()) quit() # Request path to the Sandbox path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files') mt5.shutdown() # Load training dataset filename = os.path.join(path,'study_data.csv') data = np.asarray( pd.read_table(filename, sep=',', header=None, skipinitialspace=True, encoding='utf-8', float_precision='high', dtype=np.float64, low_memory=False)) # Split training dataset to input data and target inputs=data.shape[1]-2 targerts=2 train_data=data[:,0:inputs] train_target=data[:,inputs:] # Model with 2-dimensional convolutional layer model3 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs), # Reformat tensor into 4-dimensional. Specify 3 dimensions as the 4th dimension is determined by the batch size keras.layers.Reshape((-1,4,1)), # Convolutional later with 8 filters keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), # Pooling layer keras.layers.MaxPooling2D((2,1),strides=1), # Reformat tensor to a 2-dimensional one for fully connected layers keras.layers.Flatten(), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(targerts, activation=tf.nn.tanh) ]) model3.summary() #keras.utils.plot_model(model3, show_shapes=True, to_file=os.path.join(path,'model3.png'),dpi=72,show_layer_names=False,rankdir='LR') # Model LSTM block without fully connected layers model4 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs), # Reformat tensor to a 3-dimensional one. Specify 2 dimensions as 3rd one is defined by batch size keras.layers.Reshape((-1,4)), # 2 consecutive LSTM blocks # 2st contains 40 elements keras.layers.LSTM(40, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5), return_sequences=False), # 2nd produces output instead of fully connected layer keras.layers.Reshape((-1,2)), keras.layers.LSTM(targerts) ]) model4.summary() #keras.utils.plot_model(model4, show_shapes=True, to_file=os.path.join(path,'model4.png'),dpi=72,show_layer_names=False,rankdir='LR') # Model Multi-Head Self-Attention @tf.keras.utils.register_keras_serializable(package="Custom", name='MHAttention') class MHAttention(tf.keras.layers.Layer): def __init__(self,key_size, heads, **kwargs): super(MHAttention, self).__init__(**kwargs) self.m_iHeads = heads self.m_iKeysSize = key_size self.m_iDimension=self.m_iHeads*self.m_iKeysSize; self.m_cQuerys = tf.keras.layers.Dense(self.m_iDimension) self.m_cKeys = tf.keras.layers.Dense(self.m_iDimension) self.m_cValues = tf.keras.layers.Dense(self.m_iDimension) self.m_cNormAttention=tf.keras.layers.LayerNormalization(epsilon=1e-6) self.m_cNormOutput=tf.keras.layers.LayerNormalization(epsilon=1e-6) def build(self, input_shape): self.m_iWindow=input_shape[-1] self.m_cW0 = tf.keras.layers.Dense(self.m_iWindow) self.m_cFF1=tf.keras.layers.Dense(4*self.m_iWindow, activation=tf.nn.swish) self.m_cFF2=tf.keras.layers.Dense(self.m_iWindow) def split_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.m_iHeads, self.m_iKeysSize)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, data): batch_size = tf.shape(data)[0] query = self.m_cQuerys(data) key = self.m_cKeys(data) value = self.m_cValues(data) query = self.split_heads(query, batch_size) key = self.split_heads(key, batch_size) value = self.split_heads(value, batch_size) score = tf.matmul(query, key, transpose_b=True) score = score / tf.math.sqrt(tf.cast(self.m_iKeysSize, tf.float32)) score = tf.nn.softmax(score, axis=-1) attention = tf.matmul(score, value) attention = tf.transpose(attention, perm=[0, 2, 1, 3]) attention = tf.reshape(attention,(batch_size, -1, self.m_iDimension)) attention = self.m_cW0(attention) attention=self.m_cNormAttention(data + attention) output=self.m_cFF1(attention) output=self.m_cFF2(output) output=self.m_cNormOutput(attention+output) return output def get_config(self): config={'key_size': self.m_iKeysSize, 'heads': self.m_iHeads, 'dimension': self.m_iDimension, 'window': self.m_iWindow } base_config = super(MHAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): dimension=config.pop('dimension') window=config.pop('window') layer = cls(**config) layer._build_from_signature(dimension, window) return layer def _build_from_signature(self, dimension, window): self.m_iDimension=dimension self.m_iWindow=window heads=8 key_dimension=4 model5 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs), # Reformat tensor to a 3-dimensional one. Specify 2 dimensions # as the 3rd dimension is defined by batch size # 1st dimension - sequence elements # 2nd dimension - one element description vector keras.layers.Reshape((-1,4)), MHAttention(key_dimension,heads), # Reformat tensor to a 2-dimensional one for fully connected layers keras.layers.Flatten(), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(targerts, activation=tf.nn.tanh) ]) model5.summary() #keras.utils.plot_model(model5, show_shapes=True, to_file=os.path.join(path,'model5.png'),dpi=72,show_layer_names=False,rankdir='LR') model6 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs), # Reformat tensor to a 3-dimensional one. Specify 2 dimensions # as the 3rd dimension is defined by batch size # 1st dimension - sequence elements # 2nd dimension - one element description vector keras.layers.Reshape((-1,4)), MHAttention(key_dimension,heads), MHAttention(key_dimension,heads), MHAttention(key_dimension,heads), MHAttention(key_dimension,heads), # Reformat tensor to a 2-dimensional one for fully connected layers keras.layers.Flatten(), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)), keras.layers.Dense(targerts, activation=tf.nn.tanh) ]) model6.summary() model3.compile(optimizer='Adam', loss='mean_squared_error', metrics=['accuracy']) model4.compile(optimizer='Adam', loss='mean_squared_error', metrics=['accuracy']) model5.compile(optimizer='Adam', loss='mean_squared_error', metrics=['accuracy']) #model5=keras.models.load_model(os.path.join(path,'attention.h5')) model6.compile(optimizer='Adam', loss='mean_squared_error', metrics=['accuracy']) callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5) history3 = model3.fit(train_data, train_target, epochs=500, batch_size=1000, callbacks=[callback], verbose=2, validation_split=0.01, shuffle=True) model3.save(os.path.join(path,'conv2d')) history4 = model4.fit(train_data, train_target, epochs=500, batch_size=1000, callbacks=[callback], verbose=2, validation_split=0.01, shuffle=False) model4.save(os.path.join(path,'rnn')) history5 = model5.fit(train_data, train_target, epochs=500, batch_size=1000, callbacks=[callback], verbose=2, validation_split=0.01, shuffle=True) model5.save(os.path.join(path,'attention')) history6 = model6.fit(train_data, train_target, epochs=500, batch_size=1000, callbacks=[callback], verbose=2, validation_split=0.01, shuffle=True) model6.save(os.path.join(path,'attention2')) # Render model training results plt.figure() plt.plot(history3.history['loss'], label='Conv2D train') plt.plot(history3.history['val_loss'], label='Conv2D validation') plt.plot(history4.history['loss'], label='LSTM only train') plt.plot(history4.history['val_loss'], label='LSTM only validation') plt.plot(history5.history['loss'], label='MH Attention train') plt.plot(history5.history['val_loss'], label='MH Attention validation') plt.plot(history6.history['loss'], label='MH Attention 4 layers train') plt.plot(history6.history['val_loss'], label='MH Attention 4 layers validation') plt.ylabel('$MSE$ $loss$') plt.xlabel('$Epochs$') plt.title('Model training dynamics') plt.legend(loc='upper right', ncol=2) plt.figure() plt.plot(history3.history['accuracy'], label='Conv2D train') plt.plot(history3.history['val_accuracy'], label='Conv2D validation') plt.plot(history4.history['accuracy'], label='LSTM only train') plt.plot(history4.history['val_accuracy'], label='LSTM only validation') plt.plot(history5.history['accuracy'], label='MH Attention train') plt.plot(history5.history['val_accuracy'], label='MH Attention validation') plt.plot(history6.history['accuracy'], label='MH Attention 4 layers train') plt.plot(history6.history['val_accuracy'], label='MH Attention 4 layers validation') plt.ylabel('$Accuracy$') plt.xlabel('$Epochs$') plt.title('Model training dynamics') plt.legend(loc='lower right', ncol=2) # Load testing dataset test_filename = os.path.join(path,'test_data.csv') test = np.asarray( pd.read_table(test_filename, sep=',', header=None, skipinitialspace=True, encoding='utf-8', float_precision='high', dtype=np.float64, low_memory=False)) # Split test dataset to input data and target test_data=test[:,0:inputs] test_target=test[:,inputs:] # Check model results on a test dataset test_loss3, test_acc3 = model3.evaluate(test_data, test_target, verbose=2) test_loss4, test_acc4 = model4.evaluate(test_data, test_target, verbose=2) test_loss5, test_acc5 = model5.evaluate(test_data, test_target, verbose=2) test_loss6, test_acc6 = model6.evaluate(test_data, test_target, verbose=2) # Log testing results print('Conv2D model') print('Test accuracy:', test_acc3) print('Test loss:', test_loss3) print('LSTM only model') print('Test accuracy:', test_acc4) print('Test loss:', test_loss4) print('MH Attention model') print('Test accuracy:', test_acc5) print('Test loss:', test_loss5) print('MH Attention 4 layers model') print('Test accuracy:', test_acc6) print('Test loss:', test_loss6) plt.figure() plt.bar(['Conv2D','LSTM', 'MH Attention','MH Attention\n4 layers'],[test_loss3,test_loss4,test_loss5,test_loss6]) plt.ylabel('$MSE$ $loss$') plt.title('Test results') plt.figure() plt.bar(['Conv2D','LSTM', 'MH Attention','MH Attention\n4 layers'],[test_acc3,test_acc4,test_acc5,test_acc6]) plt.ylabel('$Accuracy$') plt.title('Test results') plt.show()