# -------------------------------------------------------# # Template for creating and testing different models of # # neural networks using the same dataset. # # When training models, from training dataset, script # # allocates 10% to validate the outputs. # # After training, the script tests the performance # # of the model on a test dataset (separate data file) # # -------------------------------------------------------# # Import Libraries import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib as mp import matplotlib.pyplot as plt import matplotlib.font_manager as fm import MetaTrader5 as mt5 # Add fonts font_list=fm.findSystemFonts() for f in font_list: if(f.__contains__('ClearSans')): fm.fontManager.addfont(f) # Set parameters for output graphs mp.rcParams.update({'font.family':'serif', 'font.serif':'Clear Sans', 'axes.titlesize': 'x-large', 'axes.labelsize':'medium', 'xtick.labelsize':'small', 'ytick.labelsize':'small', 'legend.fontsize':'small', 'figure.figsize':[6.0,4.0], 'axes.titlecolor': '#707070', 'axes.labelcolor': '#707070', 'axes.edgecolor': '#707070', 'xtick.labelcolor': '#707070', 'ytick.labelcolor': '#707070', 'xtick.color': '#707070', 'ytick.color': '#707070', 'text.color': '#707070', 'lines.linewidth': 0.8, 'axes.linewidth': 0.5 }) # connect to the MetaTrader 5 terminal if not mt5.initialize(): print("initialize() failed, error code =",mt5.last_error()) quit() # request the path to the sandbox path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files') mt5.shutdown() # Load training dataset filename = os.path.join(path,'study_data.csv') data = np.asarray( pd.read_table(filename, sep=',', header=None, skipinitialspace=True, encoding='utf-8', float_precision='high', dtype=np.float64, low_memory=False)) # Split training dataset to input data and target inputs=data.shape[1]-2 targerts=2 train_data=data[:,0:inputs] train_target=data[:,inputs:] # create a neural network model model = keras.Sequential([keras.layers.InputLayer(input_shape=inputs), # Fill the model with a description of the neural layers ]) model.compile(optimizer='Adam', loss='mean_squared_error', metrics=['accuracy']) callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5) history = model.fit(train_data, train_target, epochs=500, batch_size=1000, callbacks=[callback], verbose=2, validation_split=0.1, shuffle=True) # save the trained model model.save(os.path.join(path,'model.h5')) # plot model training results plt.plot(history.history['loss'], label='Train') plt.plot(history.history['val_loss'], label='Validation') plt.ylabel('$MSE$ $Loss$') plt.xlabel('$Epochs$') plt.title('Model training dynamics') plt.legend(loc='upper right') plt.figure() plt.plot(history.history['accuracy'], label='Train') plt.plot(history.history['val_accuracy'], label='Validation') plt.ylabel('$Accuracy$') plt.xlabel('$Epochs$') plt.title('Model training dynamics') plt.legend(loc='lower right') # Load testing dataset test_filename = os.path.join(path,'test_data.csv') test = np.asarray( pd.read_table(test_filename, sep=',', header=None, skipinitialspace=True, encoding='utf-8', float_precision='high', dtype=np.float64, low_memory=False)) # Split test dataset to input data and target test_data=test[:,0:inputs] test_target=test[:,inputs:] # check model results on a test dataset test_loss, test_acc = model.evaluate(test_data, test_target) # Log testing results print('Model in test') print('Test accuracy:', test_acc) print('Test loss:', test_loss) # output of graphs plt.show()