Scikit.Regression.ONNX/ExtraTreesRegressor.mq5

190 lines
6.4 KiB
MQL5
Raw Permalink Normal View History

2025-05-30 16:23:24 +02:00
//+------------------------------------------------------------------+
//| ExtraTreesRegressor.mq5 |
//| Copyright 2023, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2023, MetaQuotes Ltd."
#property link "https://www.mql5.com"
#property version "1.00"
#define ModelName "ExtraTreesRegressor"
#define ONNXFilenameFloat "models\\extra_trees_regressor_float.onnx"
#define ONNXFilenameDouble "models\\extra_trees_regressor_double.onnx"
#resource ONNXFilenameFloat as const uchar ExtModelFloat[];
#resource ONNXFilenameDouble as const uchar ExtModelDouble[];
#define TestFloatModel 1
#define TestDoubleModel 2
//+------------------------------------------------------------------+
//| Calculate regression using float values |
//+------------------------------------------------------------------+
bool RunModelFloat(long model,vector &input_vector, vector &output_vector)
{
//--- check number of input samples
ulong batch_size=input_vector.Size();
if(batch_size==0)
return(false);
//--- prepare output array
output_vector.Resize((int)batch_size);
//--- prepare input tensor
float input_data[];
ArrayResize(input_data,(int)batch_size);
//--- set input shape
ulong input_shape[]= {batch_size, 1};
OnnxSetInputShape(model,0,input_shape);
//--- copy data to the input tensor
for(int k=0; k<(int)batch_size; k++)
input_data[k]=(float)input_vector[k];
//--- prepare output tensor
float output_data[];
ArrayResize(output_data,(int)batch_size);
//--- set output shape
ulong output_shape[]= {batch_size,1};
OnnxSetOutputShape(model,0,output_shape);
//--- run the model
bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output_data);
//--- copy output to vector
if(res)
{
for(int k=0; k<(int)batch_size; k++)
output_vector[k]=output_data[k];
}
//---
return(res);
}
//+------------------------------------------------------------------+
//| Calculate regression using double values |
//+------------------------------------------------------------------+
bool RunModelDouble(long model,vector &input_vector, vector &output_vector)
{
//--- check number of input samples
ulong batch_size=input_vector.Size();
if(batch_size==0)
return(false);
//--- prepare output array
output_vector.Resize((int)batch_size);
//--- prepare input tensor
double input_data[];
ArrayResize(input_data,(int)batch_size);
//--- set input shape
ulong input_shape[]= {batch_size, 1};
OnnxSetInputShape(model,0,input_shape);
//--- copy data to the input tensor
for(int k=0; k<(int)batch_size; k++)
input_data[k]=input_vector[k];
//--- prepare output tensor
double output_data[];
ArrayResize(output_data,(int)batch_size);
//--- set output shape
ulong output_shape[]= {batch_size,1};
OnnxSetOutputShape(model,0,output_shape);
//--- run the model
bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output_data);
//--- copy output to vector
if(res)
{
for(int k=0; k<(int)batch_size; k++)
output_vector[k]=output_data[k];
}
//---
return(res);
}
//+------------------------------------------------------------------+
//| Generate synthetic data |
//+------------------------------------------------------------------+
bool GenerateData(const int n,vector &x,vector &y)
{
if(n<=0)
return(false);
//--- prepare arrays
x.Resize(n);
y.Resize(n);
//---
for(int i=0; i<n; i++)
{
x[i]=(double)1.0*i;
y[i]=(double)(4*x[i] + 10*sin(x[i]*0.5));
}
//---
return(true);
}
//+------------------------------------------------------------------+
//| TestRegressionModel |
//+------------------------------------------------------------------+
bool TestRegressionModel(const string model_name,const int model_type)
{
//---
long model=INVALID_HANDLE;
ulong flags=ONNX_DEFAULT;
if(model_type==TestFloatModel)
{
PrintFormat("\nTesting ONNX float: %s (%s)",model_name,ONNXFilenameFloat);
model=OnnxCreateFromBuffer(ExtModelFloat,flags);
}
else
if(model_type==TestDoubleModel)
{
PrintFormat("\nTesting ONNX double: %s (%s)",model_name,ONNXFilenameDouble);
model=OnnxCreateFromBuffer(ExtModelDouble,flags);
}
else
{
PrintFormat("Model type is not incorrect.");
return(false);
}
//--- check
if(model==INVALID_HANDLE)
{
PrintFormat("model_name=%s OnnxCreate error %d",model_name,GetLastError());
return(false);
}
//---
vector x_values= {};
vector y_true= {};
vector y_predicted= {};
//---
int n=100;
GenerateData(n,x_values,y_true);
//---
bool run_result=false;
if(model_type==TestFloatModel)
{
run_result=RunModelFloat(model,x_values,y_predicted);
}
else
if(model_type==TestDoubleModel)
{
run_result=RunModelDouble(model,x_values,y_predicted);
}
//---
if(run_result)
{
PrintFormat("MQL5: R-Squared (Coefficient of determination): %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_R2));
PrintFormat("MQL5: Mean Absolute Error: %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_MAE));
PrintFormat("MQL5: Mean Squared Error: %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_MSE));
}
else
PrintFormat("Error %d",GetLastError());
//--- release model
OnnxRelease(model);
//---
return(true);
}
//+------------------------------------------------------------------+
//| Script program start function |
//+------------------------------------------------------------------+
int OnStart(void)
{
//--- test ONNX regression model for float
TestRegressionModel(ModelName,TestFloatModel);
//--- test ONNX regression model for double
TestRegressionModel(ModelName,TestDoubleModel);
//---
return(0);
}
//+------------------------------------------------------------------+