Scikit.Regression.ONNX/Scikit.Regression.ONNX.mq5
super.admin 25e0ee40ab convert
2025-05-30 16:23:24 +02:00

848 lines
32 KiB
MQL5

//+------------------------------------------------------------------+
//| Scikit.Regression.ONNX.mq5 |
//| Copyright 2023, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#define TestFloatModel 1
#define TestDoubleModel 2
//---
#resource "models\\ard_regression_float.onnx" as const uchar ExtModelARDRegressionF[];
#resource "models\\ard_regression_double.onnx" as const uchar ExtModelARDRegressionD[];
#resource "models\\bayesian_ridge_float.onnx" as const uchar ExtModelBayesianRidgeF[];
#resource "models\\bayesian_ridge_double.onnx" as const uchar ExtModelBayesianRidgeD[];
#resource "models\\elastic_net_float.onnx" as const uchar ExtModelElasticNetF[];
#resource "models\\elastic_net_double.onnx" as const uchar ExtModelElasticNetD[];
#resource "models\\elastic_net_cv_float.onnx" as const uchar ExtModelElasticNetCVF[];
#resource "models\\elastic_net_cv_double.onnx" as const uchar ExtModelElasticNetCVD[];
#resource "models\\huber_regressor_float.onnx" as const uchar ExtModelHuberRegressorF[];
#resource "models\\huber_regressor_double.onnx" as const uchar ExtModelHuberRegressorD[];
#resource "models\\lars_float.onnx" as const uchar ExtModelLarsF[];
#resource "models\\lars_double.onnx" as const uchar ExtModelLarsD[];
#resource "models\\lars_cv_float.onnx" as const uchar ExtModelLarsCVF[];
#resource "models\\lars_cv_double.onnx" as const uchar ExtModelLarsCVD[];
#resource "models\\lasso_float.onnx" as const uchar ExtModelLassoF[];
#resource "models\\lasso_double.onnx" as const uchar ExtModelLassoD[];
#resource "models\\lasso_cv_float.onnx" as const uchar ExtModelLassoCVF[];
#resource "models\\lasso_cv_double.onnx" as const uchar ExtModelLassoCVD[];
#resource "models\\lasso_lars_float.onnx" as const uchar ExtModelLassoLarsF[];
#resource "models\\lasso_lars_double.onnx" as const uchar ExtModelLassoLarsD[];
#resource "models\\lasso_lars_cv_float.onnx" as const uchar ExtModelLassoLarsCVF[];
#resource "models\\lasso_lars_cv_double.onnx" as const uchar ExtModelLassoLarsCVD[];
#resource "models\\lasso_lars_ic_float.onnx" as const uchar ExtModelLassoLarsICF[];
#resource "models\\lasso_lars_ic_double.onnx" as const uchar ExtModelLassoLarsICD[];
#resource "models\\linear_regression_float.onnx" as const uchar ExtModelLinearRegressionF[];
#resource "models\\linear_regression_double.onnx" as const uchar ExtModelLinearRegressionD[];
#resource "models\\ridge_float.onnx" as const uchar ExtModelRidgeF[];
#resource "models\\ridge_double.onnx" as const uchar ExtModelRidgeD[];
#resource "models\\ridge_cv_float.onnx" as const uchar ExtModelRidgeCVF[];
#resource "models\\ridge_cv_double.onnx" as const uchar ExtModelRidgeCVD[];
#resource "models\\orthogonal_matching_pursuit_float.onnx" as const uchar ExtModelOMPF[];
#resource "models\\orthogonal_matching_pursuit_double.onnx" as const uchar ExtModelOMPD[];
#resource "models\\passive_aggressive_regressor_float.onnx" as const uchar ExtModelPAD[];
#resource "models\\passive_aggressive_regressor_double.onnx" as const uchar ExtModelPAF[];
#resource "models\\quantile_regressor_float.onnx" as const uchar ExtModelQuantileRegressorF[];
#resource "models\\quantile_regressor_double.onnx" as const uchar ExtModelQuantileRegressorD[];
#resource "models\\ransac_regressor_float.onnx" as const uchar ExtModelRANSACRegressorF[];
#resource "models\\ransac_regressor_double.onnx" as const uchar ExtModelRANSACRegressorD[];
#resource "models\\theil_sen_regressor_double.onnx" as const uchar ExtModelTheilSenRegressorD[];
#resource "models\\theil_sen_regressor_float.onnx" as const uchar ExtModelTheilSenRegressorF[];
#resource "models\\linear_svr_float.onnx" as const uchar ExtModelLinearSVRF[];
#resource "models\\linear_svr_double.onnx" as const uchar ExtModelLinearSVRD[];
#resource "models\\mlp_regressor_float.onnx" as const uchar ExtModelMLPRegressorF[];
#resource "models\\mlp_regressor_double.onnx" as const uchar ExtModelMLPRegressorD[];
#resource "models\\pls_regression_float.onnx" as const uchar ExtModelPLSRegressionF[];
#resource "models\\pls_regression_double.onnx" as const uchar ExtModelPLSRegressionD[];
#resource "models\\tweedie_regressor_float.onnx" as const uchar ExtModelTweedieRegressorF[];
#resource "models\\tweedie_regressor_double.onnx" as const uchar ExtModelTweedieRegressorD[];
#resource "models\\poisson_regressor_float.onnx" as const uchar ExtModelPoissonRegressorF[];
#resource "models\\poisson_regressor_double.onnx" as const uchar ExtModelPoissonRegressorD[];
#resource "models\\radius_neighbors_regressor_float.onnx" as const uchar ExtModelRadiusNeighborsRegressorF[];
#resource "models\\radius_neighbors_regressor_double.onnx" as const uchar ExtModelRadiusNeighborsRegressorD[];
#resource "models\\kneighbors_regressor_float.onnx" as const uchar ExtModelKNeighborsRegressorF[];
#resource "models\\kneighbors_regressor_double.onnx" as const uchar ExtModelKNeighborsRegressorD[];
#resource "models\\gaussian_process_regressor_float.onnx" as const uchar ExtModelGaussianProcessRegressorF[];
#resource "models\\gaussian_process_regressor_double.onnx" as const uchar ExtModelGaussianProcessRegressorD[];
#resource "models\\gamma_regressor_float.onnx" as const uchar ExtModelGammaRegressorF[];
#resource "models\\gamma_regressor_double.onnx" as const uchar ExtModelGammaRegressorD[];
#resource "models\\sgd_regressor_double.onnx" as const uchar ExtModelSGDRegressorD[];
#resource "models\\sgd_regressor_float.onnx" as const uchar ExtModelSGDRegressorF[];
#resource "models\\adaboost_regressor_float.onnx" as const uchar ExtModelAdaBoostRegressorF[];
#resource "models\\adaboost_regressor_double.onnx" as const uchar ExtModelAdaBoostRegressorD[];
#resource "models\\bagging_regressor_float.onnx" as const uchar ExtModelBaggingRegressorF[];
#resource "models\\bagging_regressor_double.onnx" as const uchar ExtModelBaggingRegressorD[];
#resource "models\\decision_tree_regressor_float.onnx" as const uchar ExtModelDecisionTreeRegressorF[];
#resource "models\\decision_tree_regressor_double.onnx" as const uchar ExtModelDecisionTreeRegressorD[];
#resource "models\\extra_tree_regressor_float.onnx" as const uchar ExtModelExtraTreeRegressorF[];
#resource "models\\extra_tree_regressor_double.onnx" as const uchar ExtModelExtraTreeRegressorD[];
#resource "models\\extra_trees_regressor_float.onnx" as const uchar ExtModelExtraTreesRegressorF[];
#resource "models\\extra_trees_regressor_double.onnx" as const uchar ExtModelExtraTreesRegressorD[];
#resource "models\\nu_svr_float.onnx" as const uchar ExtModelNuSVRF[];
#resource "models\\nu_svr_double.onnx" as const uchar ExtModelNuSVRD[];
#resource "models\\random_forest_regressor_float.onnx" as const uchar ExtModelRandomForestRegressorF[];
#resource "models\\random_forest_regressor_double.onnx" as const uchar ExtModelRandomForestRegressorD[];
#resource "models\\gradient_boosting_regressor_float.onnx" as const uchar ExtModelGradientBoostingRegressorF[];
#resource "models\\gradient_boosting_regressor_double.onnx" as const uchar ExtModelGradientBoostingRegressorD[];
#resource "models\\hist_gradient_boosting_regressor_float.onnx" as const uchar ExtModelHistGradientBoostingRegressorF[];
#resource "models\\hist_gradient_boosting_regressor_double.onnx" as const uchar ExtModelHistGradientBoostingRegressorD[];
#resource "models\\svr_float.onnx" as const uchar ExtModelSVRF[];
#resource "models\\svr_double.onnx" as const uchar ExtModelSVRD[];
//--- float and double ONNX
#define ModelARDRegression 1
#define ModelBayesianRidge 2
#define ModelElasticNet 3
#define ModelElasticNetCV 4
#define ModelHuberRegressor 5
#define ModelLars 6
#define ModelLarsCV 7
#define ModelLasso 8
#define ModelLassoCV 9
#define ModelLassoLars 10
#define ModelLassoLarsCV 11
#define ModelLassoLarsIC 12
#define ModelLinearRegression 13
#define ModelRidge 14
#define ModelRidgeCV 15
#define ModelOrthogonalMatchingPursuit 16
#define ModelPassiveAggressiveRegressor 17
#define ModelQuantileRegressor 18
#define ModelRANSACRegressor 19
#define ModelTheilSenRegressor 20
#define ModelLinearSVR 21
#define ModelMLPRegressor 22
#define ModelPLSRegression 23
#define ModelTweedieRegressor 24
#define ModelPoissonRegressor 25
#define ModelRadiusNeighborsRegressor 26
#define ModelKNeighborsRegressor 27
#define ModelGaussianProcessRegressor 28
#define ModelGammaRegressor 29
#define ModelSGDRegressor 30
//--- only float ONNX models
#define ModelAdaBoostRegressor 31
#define ModelBaggingRegressor 32
#define ModelDecisionTreeRegressor 33
#define ModelExtraTreeRegressor 34
#define ModelExtraTreesRegressor 35
#define ModelNuSVR 36
#define ModelRandomForestRegressor 37
#define ModelGradientBoostingRegressor 38
#define ModelHistGradientBoostingRegressor 39
#define ModelSVR 40
//---
#define StrModelDouble " (double)";
#define StrModelFloat " (float)";
//+------------------------------------------------------------------+
//| CreateModel |
//+------------------------------------------------------------------+
long CreateModel(const int model_id,const int model_type,string &model_name)
{
long model_handle=INVALID_HANDLE;
ulong flags=ONNX_DEFAULT;
//ulong flags=ONNX_DEBUG_LOGS;
//---
switch(model_id)
{
//---
case ModelARDRegression:
{
model_name="ARDRegression";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelARDRegressionF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelARDRegressionD,flags);
break;
}
//---
case ModelBayesianRidge:
{
model_name="BayesianRidge";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelBayesianRidgeF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelBayesianRidgeD,flags);
break;
}
//---
case ModelElasticNet:
{
model_name="ElasticNet";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelElasticNetF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelElasticNetD,flags);
break;
}
//---
case ModelElasticNetCV:
{
model_name="ElasticNetCV";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelElasticNetCVF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelElasticNetCVD,flags);
break;
}
//---
case ModelHuberRegressor:
{
model_name="HuberRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelHuberRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelHuberRegressorD,flags);
break;
}
//---
case ModelLars:
{
model_name="Lars";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLarsF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLarsD,flags);
break;
}
//---
case ModelLarsCV:
{
model_name="LarsCV";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLarsCVF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLarsCVD,flags);
break;
}
//---
case ModelLasso:
{
model_name="Lasso";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoD,flags);
break;
}
//---
case ModelLassoCV:
{
model_name="LassoCV";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoCVF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoCVD,flags);
break;
}
//---
case ModelLassoLars:
{
model_name="LassoLars";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsD,flags);
break;
}
//---
case ModelLassoLarsCV:
{
model_name="LassoLarsCV";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsCVF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsCVD,flags);
break;
}
//---
case ModelLassoLarsIC:
{
model_name="LassoLarsIC";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsICF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLassoLarsICD,flags);
break;
}
//---
case ModelLinearRegression:
{
model_name="LinearRegression";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLinearRegressionF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLinearRegressionD,flags);
break;
}
//---
case ModelRidge:
{
model_name="Ridge";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelRidgeF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelRidgeD,flags);
break;
}
//---
case ModelRidgeCV:
{
model_name="RidgeCV";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelRidgeCVF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelRidgeCVD,flags);
break;
}
//---
case ModelOrthogonalMatchingPursuit:
{
model_name="OrthogonalMatchingPursuit";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelOMPF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelOMPD,flags);
break;
}
//---
case ModelPassiveAggressiveRegressor:
{
model_name="PassiveAggressiveRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelPAF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelPAD,flags);
break;
}
//---
case ModelQuantileRegressor:
{
model_name="QuantileRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelQuantileRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelQuantileRegressorD,flags);
break;
}
//---
case ModelRANSACRegressor:
{
model_name="RANSACRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelRANSACRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelRANSACRegressorD,flags);
break;
}
//---
case ModelTheilSenRegressor:
{
model_name="TheilSenRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelTheilSenRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelTheilSenRegressorD,flags);
break;
}
//---
case ModelLinearSVR:
{
model_name="LinearSVR";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelLinearSVRF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelLinearSVRD,flags);
break;
}
//---
case ModelMLPRegressor:
{
model_name="MLPRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelMLPRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelMLPRegressorD,flags);
break;
}
//---
case ModelPLSRegression:
{
model_name="PLSRegression";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelPLSRegressionF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelPLSRegressionD,flags);
break;
}
//---
case ModelTweedieRegressor:
{
model_name="TweedieRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelTweedieRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelTweedieRegressorD,flags);
break;
}
//---
case ModelPoissonRegressor:
{
model_name="PoissonRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelPoissonRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelPoissonRegressorD,flags);
break;
}
//---
case ModelRadiusNeighborsRegressor:
{
model_name="RadiusNeighborsRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelRadiusNeighborsRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelRadiusNeighborsRegressorD,flags);
break;
}
//---
case ModelKNeighborsRegressor:
{
model_name="KNeighborsRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelKNeighborsRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelKNeighborsRegressorD,flags);
break;
}
//---
case ModelGaussianProcessRegressor:
{
model_name="GaussianProcessRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelGaussianProcessRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelGaussianProcessRegressorD,flags);
break;
}
//---
case ModelGammaRegressor:
{
model_name="GammaRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelGammaRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelGammaRegressorD,flags);
break;
}
//---
case ModelSGDRegressor:
{
model_name="SGDRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelSGDRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelSGDRegressorD,flags);
break;
}
//---
case ModelAdaBoostRegressor:
{
model_name="AdaBoostRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelAdaBoostRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelAdaBoostRegressorD,flags);
break;
}
//---
case ModelBaggingRegressor:
{
model_name="BaggingRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelBaggingRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelBaggingRegressorD,flags);
break;
}
//---
case ModelDecisionTreeRegressor:
{
model_name="DecisionTreeRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelDecisionTreeRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelDecisionTreeRegressorD,flags);
break;
}
//---
case ModelExtraTreeRegressor:
{
model_name="ExtraTreeRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelExtraTreeRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelExtraTreeRegressorD,flags);
break;
}
//---
case ModelExtraTreesRegressor:
{
model_name="ExtraTreesRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelExtraTreesRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelExtraTreesRegressorD,flags);
break;
}
case ModelNuSVR:
{
model_name="NuSVR";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelNuSVRF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelNuSVRD,flags);
break;
}
//---
case ModelRandomForestRegressor:
{
model_name="RandomForestRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelRandomForestRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelRandomForestRegressorD,flags);
break;
}
//---
case ModelGradientBoostingRegressor:
{
model_name="GradientBoostingRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelGradientBoostingRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelGradientBoostingRegressorD,flags);
break;
}
//---
case ModelHistGradientBoostingRegressor:
{
model_name="HistGradientBoostingRegressor";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelHistGradientBoostingRegressorF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelHistGradientBoostingRegressorD,flags);
break;
}
//---
case ModelSVR:
{
model_name="SVR";
//---
if(model_type==TestFloatModel)
model_handle=OnnxCreateFromBuffer(ExtModelSVRF,flags);
else
if(model_type==TestDoubleModel)
model_handle=OnnxCreateFromBuffer(ExtModelSVRD,flags);
break;
}
//---
default:
break;
}
//---
if(model_type==TestFloatModel)
model_name+=StrModelFloat;
//---
if(model_type==TestDoubleModel)
model_name+=StrModelDouble;
//---
return(model_handle);
}
//+------------------------------------------------------------------+
//| Calculate regression using float values |
//+------------------------------------------------------------------+
bool RunModelFloat(long model,vector &input_vector, vector &output_vector)
{
//--- check number of input samples
ulong batch_size=input_vector.Size();
if(batch_size==0)
return(false);
//--- prepare output array
output_vector.Resize((int)batch_size);
//--- prepare input tensor
float input_data[];
ArrayResize(input_data,(int)batch_size);
//--- set input shape
ulong input_shape[]= {batch_size, 1};
OnnxSetInputShape(model,0,input_shape);
//--- copy data to the input tensor
for(int k=0; k<(int)batch_size; k++)
input_data[k]=(float)input_vector[k];
//--- prepare output tensor
float output_data[];
ArrayResize(output_data,(int)batch_size);
//--- set output shape
ulong output_shape[]= {batch_size,1};
OnnxSetOutputShape(model,0,output_shape);
//--- run the model
bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output_data);
//--- copy output to vector
if(res)
{
for(int k=0; k<(int)batch_size; k++)
output_vector[k]=output_data[k];
}
//---
return(res);
}
//+------------------------------------------------------------------+
//| Calculate regression using double values |
//+------------------------------------------------------------------+
bool RunModelDouble(long model,vector &input_vector, vector &output_vector)
{
//--- check number of input samples
ulong batch_size=input_vector.Size();
if(batch_size==0)
return(false);
//--- prepare output array
output_vector.Resize((int)batch_size);
//--- prepare input tensor
double input_data[];
ArrayResize(input_data,(int)batch_size);
//--- set input shape
ulong input_shape[]= {batch_size, 1};
OnnxSetInputShape(model,0,input_shape);
//--- copy data to the input tensor
for(int k=0; k<(int)batch_size; k++)
input_data[k]=input_vector[k];
//--- prepare output tensor
double output_data[];
ArrayResize(output_data,(int)batch_size);
//--- set output shape
ulong output_shape[]= {batch_size,1};
OnnxSetOutputShape(model,0,output_shape);
//--- run the model
bool res=OnnxRun(model,ONNX_DEBUG_LOGS,input_data,output_data);
//--- copy output to vector
if(res)
{
for(int k=0; k<(int)batch_size; k++)
output_vector[k]=output_data[k];
}
//---
return(res);
}
//+------------------------------------------------------------------+
//| Generate synthetic data |
//+------------------------------------------------------------------+
bool GenerateData(const int n,vector &x,vector &y)
{
if(n<=0)
return(false);
//--- prepare arrays
x.Resize(n);
y.Resize(n);
//---
for(int i=0; i<n; i++)
{
x[i]=(double)1.0*i;
y[i]=(double)(4*x[i] + 10*sin(x[i]*0.5));
}
//---
return(true);
}
//+------------------------------------------------------------------+
//| TestRegressionModel |
//+------------------------------------------------------------------+
bool TestRegressionModel(const long model,const string model_name,const int model_type)
{
//---
ulong flags=ONNX_DEFAULT;
if(model_type==TestFloatModel)
{
PrintFormat("Testing ONNX float: %s ",model_name);
//model=OnnxCreateFromBuffer(ExtModelFloat,flags);
}
else
if(model_type==TestDoubleModel)
{
PrintFormat("Testing ONNX double: %s ",model_name);
//model=OnnxCreateFromBuffer(ExtModelDouble,flags);
}
else
{
PrintFormat("Model type is not incorrect.");
return(false);
}
//---
vector x_values= {};
vector y_true= {};
vector y_predicted= {};
//---
int n=100;
GenerateData(n,x_values,y_true);
//---
bool run_result=false;
if(model_type==TestFloatModel)
{
run_result=RunModelFloat(model,x_values,y_predicted);
}
else
if(model_type==TestDoubleModel)
{
run_result=RunModelDouble(model,x_values,y_predicted);
}
//---
if(run_result)
{
PrintFormat("MQL5: R-Squared (Coefficient of determination): %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_R2));
PrintFormat("MQL5: Mean Absolute Error: %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_MAE));
PrintFormat("MQL5: Mean Squared Error: %.16f",y_predicted.RegressionMetric(y_true,REGRESSION_MSE));
}
else
PrintFormat("Error %d",GetLastError());
//--- release model
OnnxRelease(model);
//---
return(true);
}
//+------------------------------------------------------------------+
//| Script program start function |
//+------------------------------------------------------------------+
int OnStart(void)
{
//---
string model_name;
//--- test ONNX models (float)
int model_type=TestFloatModel;
Print("Testing ONNX float models...");
for(int model_id=1; model_id<=40; model_id++)
{
long model_handle=CreateModel(model_id,model_type,model_name);
if(model_handle!=INVALID_HANDLE)
{
PrintFormat("\nid=%d Name=%s",model_id, model_name);
//---
TestRegressionModel(model_handle,model_name,model_type);
}
else
PrintFormat("id=%d model_name=%s Error=%d\n",model_id,model_name,GetLastError());
}
//--- test ONNX models (double)
model_type=TestDoubleModel;
Print("\nTesting ONNX double models...");
for(int model_id=1; model_id<=30; model_id++)
{
long model_handle=CreateModel(model_id,model_type,model_name);
if(model_handle!=INVALID_HANDLE)
{
PrintFormat("\nid=%d Name=%s",model_id, model_name);
//---
TestRegressionModel(model_handle,model_name,model_type);
}
else
PrintFormat("id=%d model_name=%s Error=%d\n",model_id,model_name,GetLastError());
}
//--- test ONNX models (ONNX double execution errors)
/*model_type=TestDoubleModel;
Print("\nTesting ONNX double models with errors...");
for(int model_id=31; model_id<=40; model_id++)
{
long model_handle=CreateModel(model_id,model_type,model_name);
if(model_handle!=INVALID_HANDLE)
{
PrintFormat("\nid=%d Name=%s",model_id, model_name);
//---
TestRegressionModel(model_handle,model_name,model_type);
}
else
PrintFormat("id=%d model_name=%s Error=%d\n",model_id,model_name,GetLastError());
}*/
//---
return(0);
}
//+------------------------------------------------------------------+