AlgLib_ver3.19/TestInterfaces.mqh
super.admin 9e263d779c convert
2025-05-30 14:39:48 +02:00

17989 lines
680 KiB
MQL5

//+------------------------------------------------------------------+
//| TestInterfaces.mqh |
//| Copyright 2003-2022 Sergey Bochkanov (ALGLIB project) |
//| Copyright 2012-2023, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
//| Implementation of ALGLIB library in MetaQuotes Language 5 |
//| |
//| The features of the library include: |
//| - Linear algebra (direct algorithms, EVD, SVD) |
//| - Solving systems of linear and non-linear equations |
//| - Interpolation |
//| - Optimization |
//| - FFT (Fast Fourier Transform) |
//| - Numerical integration |
//| - Linear and nonlinear least-squares fitting |
//| - Ordinary differential equations |
//| - Computation of special functions |
//| - Descriptive statistics and hypothesis testing |
//| - Data analysis - classification, regression |
//| - Implementing linear algebra algorithms, interpolation, etc. |
//| in high-precision arithmetic (using MPFR) |
//| |
//| This file is free software; you can redistribute it and/or |
//| modify it under the terms of the GNU General Public License as |
//| published by the Free Software Foundation (www.fsf.org); either |
//| version 2 of the License, or (at your option) any later version. |
//| |
//| This program is distributed in the hope that it will be useful, |
//| but WITHOUT ANY WARRANTY; without even the implied warranty of |
//| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
//| GNU General Public License for more details. |
//+------------------------------------------------------------------+
#include "alglib.mqh"
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Func |
//+------------------------------------------------------------------+
class CNDimensional_Func1 : public CNDimensional_Func
{
public:
//--- constructor, destructor
CNDimensional_Func1(void) {}
~CNDimensional_Func1(void) {}
virtual void Func(double &x[],double &func,CObject &obj);
virtual void Func(CRowDouble &x,double &func,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=100*(x0+3)^4 + (x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_Func1::Func(double &x[],double &func,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
}
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=100*(x0+3)^4 + (x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_Func1::Func(CRowDouble &x,double &func,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Func |
//+------------------------------------------------------------------+
class CNDimensional_Func2 : public CNDimensional_Func
{
public:
//--- constructor, destructor
CNDimensional_Func2(void) {}
~CNDimensional_Func2(void) {}
virtual void Func(double &x[],double &func,CObject &obj);
virtual void Func(CRowDouble &x,double &func,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 |
//+------------------------------------------------------------------+
void CNDimensional_Func2::Func(double &x[],double &func,CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
}
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 |
//+------------------------------------------------------------------+
void CNDimensional_Func2::Func(CRowDouble &x,double &func,CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Func |
//+------------------------------------------------------------------+
class CNDimensional_Bad_Func : public CNDimensional_Func
{
public:
//--- constructor, destructor
CNDimensional_Bad_Func(void) {}
~CNDimensional_Bad_Func(void) {}
virtual void Func(double &x[],double &func,CObject &obj);
virtual void Func(CRowDouble &x,double &func,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Func::Func(double &x[],double &func,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
}
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Func::Func(CRowDouble &x,double &func,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Grad |
//+------------------------------------------------------------------+
class CNDimensional_Grad1 : public CNDimensional_Grad
{
public:
//--- constructor, destructor
CNDimensional_Grad1(void) {}
~CNDimensional_Grad1(void) {}
virtual void Grad(double &x[],double &func,double &grad[],CObject &obj);
virtual void Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=100*(x0+3)^4 + (x1-3)^4 and its|
//| derivatives df/d0 and df/dx1 |
//+------------------------------------------------------------------+
void CNDimensional_Grad1::Grad(double &x[],double &func,
double &grad[],CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad[0]=400*MathPow(x[0]+3,3);
grad[1]=4*MathPow(x[1]-3,3);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_Grad1::Grad(CRowDouble &x,double &func,
CRowDouble &grad,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad.Set(0,400*MathPow(x[0]+3,3));
grad.Set(1,4*MathPow(x[1]-3,3));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Grad |
//+------------------------------------------------------------------+
class CNDimensional_Grad2 : public CNDimensional_Grad
{
public:
//--- constructor, destructor
CNDimensional_Grad2(void) {}
~CNDimensional_Grad2(void) {}
virtual void Grad(double &x[],double &func,double &grad[],CObject &obj);
virtual void Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 and its |
//| derivatives df/d0 and df/dx1 |
//+------------------------------------------------------------------+
void CNDimensional_Grad2::Grad(double &x[],double &func,
double &grad[],CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
grad[0]=4*(x[0]*x[0]+1)*x[0];
grad[1]=2*(x[1]-1);
}
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 and its |
//| derivatives df/d0 and df/dx1 |
//+------------------------------------------------------------------+
void CNDimensional_Grad2::Grad(CRowDouble &x,double &func,
CRowDouble &grad,CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
grad.Set(0,4*(x[0]*x[0]+1)*x[0]);
grad.Set(1,2*(x[1]-1));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Grad |
//+------------------------------------------------------------------+
class CNDimensional_Bad_Grad : public CNDimensional_Grad
{
public:
//--- constructor, destructor
CNDimensional_Bad_Grad(void) {}
~CNDimensional_Bad_Grad(void) {}
virtual void Grad(double &x[],double &func,double &grad[],CObject &obj);
virtual void Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Grad::Grad(double &x[],double &func,double &grad[],CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad[0]=40*MathPow(x[0]+3,3);
grad[1]=40*MathPow(x[1]-3,3);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Grad::Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad.Set(0,40*MathPow(x[0]+3,3));
grad.Set(1,40*MathPow(x[1]-3,3));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Grad |
//+------------------------------------------------------------------+
class CNDimensional_S1_Grad : public CNDimensional_Grad
{
public:
//--- constructor, destructor
CNDimensional_S1_Grad(void) {}
~CNDimensional_S1_Grad(void) {}
virtual void Grad(double &x[],double &func,double &grad[],CObject &obj);
virtual void Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x)=(1+x)^(-0.2)+(1-x)^(-0.3)+1000*x |
//| and its gradient. function is trimmed when we calculate it near |
//| the singular points or outside of the [-1,+1]. Note that we do |
//| NOT calculate gradient in this case. |
//+------------------------------------------------------------------+
void CNDimensional_S1_Grad::Grad(double &x[],double &func,double &grad[],CObject &obj)
{
if((x[0]<=-0.999999999999) || (x[0]>=+0.999999999999))
{
func=1.0E+300;
return;
}
func=MathPow(1+x[0],-0.2)+MathPow(1-x[0],-0.3)+1000*x[0];
grad[0]=-0.2*MathPow(1+x[0],-1.2)+0.3*MathPow(1-x[0],-1.3)+1000;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_S1_Grad::Grad(CRowDouble &x,double &func,CRowDouble &grad,CObject &obj)
{
if((x[0]<=-0.999999999999) || (x[0]>=+0.999999999999))
{
func=1.0E+300;
return;
}
func=MathPow(1+x[0],-0.2)+MathPow(1-x[0],-0.3)+1000*x[0];
grad.Set(0,-0.2*MathPow(1+x[0],-1.2)+0.3*MathPow(1-x[0],-1.3)+1000);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Hess |
//+------------------------------------------------------------------+
class CNDimensional_Hess1 : public CNDimensional_Hess
{
public:
//--- constructor, destructor
CNDimensional_Hess1(void) {}
~CNDimensional_Hess1(void) {}
virtual void Hess(double &x[],double &func,double &grad[],CMatrixDouble &hess,CObject &obj);
virtual void Hess(CRowDouble &x,double &func,CRowDouble &grad,CMatrixDouble &hess,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=100*(x0+3)^4 + (x1-3)^4 |
//| its derivatives df/d0 and df/dx1 |
//| and its Hessian. |
//+------------------------------------------------------------------+
void CNDimensional_Hess1::Hess(double &x[],double &func,double &grad[],
CMatrixDouble &hess,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad[0]=400*MathPow(x[0]+3,3);
grad[1]=4*MathPow(x[1]-3,3);
hess.Set(0,0,1200*MathPow(x[0]+3,2));
hess.Set(0,1,0);
hess.Set(1,0,0);
hess.Set(1,1,12*MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=100*(x0+3)^4 + (x1-3)^4 |
//| its derivatives df/d0 and df/dx1 |
//| and its Hessian. |
//+------------------------------------------------------------------+
void CNDimensional_Hess1::Hess(CRowDouble &x,double &func,CRowDouble &grad,
CMatrixDouble &hess,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad.Set(0,400*MathPow(x[0]+3,3));
grad.Set(1,4*MathPow(x[1]-3,3));
hess.Set(0,0,1200*MathPow(x[0]+3,2));
hess.Set(0,1,0);
hess.Set(1,0,0);
hess.Set(1,1,12*MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Hess |
//+------------------------------------------------------------------+
class CNDimensional_Hess2 : public CNDimensional_Hess
{
public:
//--- constructor, destructor
CNDimensional_Hess2(void) {}
~CNDimensional_Hess2(void) {}
virtual void Hess(double &x[],double &func,double &grad[],CMatrixDouble &hess,CObject &obj);
virtual void Hess(CRowDouble &x,double &func,CRowDouble &grad,CMatrixDouble &hess,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 |
//| its gradient and Hessian |
//+------------------------------------------------------------------+
void CNDimensional_Hess2::Hess(double &x[],double &func,double &grad[],
CMatrixDouble &hess,CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
grad[0]=4*(x[0]*x[0]+1)*x[0];
grad[1]=2*(x[1]-1);
hess.Set(0,0,12*x[0]*x[0]+4);
hess.Set(0,1,0);
hess.Set(1,0,0);
hess.Set(1,1,2);
}
//+------------------------------------------------------------------+
//| This callback calculates f(x0,x1)=(x0^2+1)^2 + (x1-1)^2 |
//| its gradient and Hessian |
//+------------------------------------------------------------------+
void CNDimensional_Hess2::Hess(CRowDouble &x,double &func,CRowDouble &grad,
CMatrixDouble &hess,CObject &obj)
{
func=MathPow(x[0]*x[0]+1,2)+MathPow(x[1]-1,2);
grad.Set(0,4*(x[0]*x[0]+1)*x[0]);
grad.Set(1,2*(x[1]-1));
hess.Set(0,0,12*x[0]*x[0]+4);
hess.Set(0,1,0);
hess.Set(1,0,0);
hess.Set(1,1,2);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Hess |
//+------------------------------------------------------------------+
class CNDimensional_Bad_Hess : public CNDimensional_Hess
{
public:
//--- constructor, destructor
CNDimensional_Bad_Hess(void) {}
~CNDimensional_Bad_Hess(void) {}
virtual void Hess(double &x[],double &func,double &grad[],CMatrixDouble &hess,CObject &obj);
virtual void Hess(CRowDouble &x,double &func,CRowDouble &grad,CMatrixDouble &hess,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Hess::Hess(double &x[],double &func,double &grad[],
CMatrixDouble &hess,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad[0]=40*MathPow(x[0]+3,3);
grad[1]=40*MathPow(x[1]-3,3);
hess.Set(0,0,120*MathPow(x[0]+3,2));
hess.Set(0,1,1);
hess.Set(1,0,1);
hess.Set(1,1,120*MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Hess::Hess(CRowDouble &x,double &func,CRowDouble &grad,
CMatrixDouble &hess,CObject &obj)
{
func=100*MathPow(x[0]+3,4)+MathPow(x[1]-3,4);
grad.Set(0,40*MathPow(x[0]+3,3));
grad.Set(1,40*MathPow(x[1]-3,3));
hess.Set(0,0,120*MathPow(x[0]+3,2));
hess.Set(0,1,1);
hess.Set(1,0,1);
hess.Set(1,1,120*MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_FVec |
//+------------------------------------------------------------------+
class CNDimensional_FVec1 : public CNDimensional_FVec
{
public:
//--- constructor, destructor
CNDimensional_FVec1(void) {}
~CNDimensional_FVec1(void) {}
virtual void FVec(double &x[],double &fi[],CObject &obj);
virtual void FVec(CRowDouble &x,CRowDouble &fi,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=100*(x0+3)^4, |
//| f1(x0,x1)=(x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_FVec1::FVec(double &x[],double &fi[],CObject &obj)
{
fi[0]=10*MathPow(x[0]+3,2);
fi[1]=MathPow(x[1]-3,2);
}
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=100*(x0+3)^4, |
//| f1(x0,x1)=(x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_FVec1::FVec(CRowDouble &x,CRowDouble &fi,CObject &obj)
{
fi.Set(0,10*MathPow(x[0]+3,2));
fi.Set(1,MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_FVec |
//+------------------------------------------------------------------+
class CNDimensional_FVec2 : public CNDimensional_FVec
{
public:
//--- constructor, destructor
CNDimensional_FVec2(void) {}
~CNDimensional_FVec2(void) {}
virtual void FVec(double &x[],double &fi[],CObject &obj);
virtual void FVec(CRowDouble &x,CRowDouble &fi,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=100*(x0+3)^4, |
//| f1(x0,x1)=(x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_FVec2::FVec(double &x[],double &fi[],CObject &obj)
{
fi[0]=x[0]*x[0]+1;
fi[1]=x[1]-1;
}
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=100*(x0+3)^4, |
//| f1(x0,x1)=(x1-3)^4 |
//+------------------------------------------------------------------+
void CNDimensional_FVec2::FVec(CRowDouble &x,CRowDouble &fi,CObject &obj)
{
fi.Set(0,x[0]*x[0]+1);
fi.Set(1,x[1]-1);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_FVec |
//+------------------------------------------------------------------+
class CNDimensional_Bad_FVec : public CNDimensional_FVec
{
public:
//--- constructor, destructor
CNDimensional_Bad_FVec(void) {}
~CNDimensional_Bad_FVec(void) {}
virtual void FVec(double &x[],double &fi[],CObject &obj);
virtual void FVec(CRowDouble &x,CRowDouble &fi,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_FVec::FVec(double &x[],double &fi[],CObject &obj)
{
fi[0]=10*MathPow(x[0]+3,2);
fi[1]=MathPow(x[1]-3,2);
}
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, i.e. function with |
//| incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_FVec::FVec(CRowDouble &x,CRowDouble &fi,CObject &obj)
{
fi.Set(0,10*MathPow(x[0]+3,2));
fi.Set(1,MathPow(x[1]-3,2));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_FVec |
//+------------------------------------------------------------------+
class CNDimensional_NSFunc1_FVec : public CNDimensional_FVec
{
public:
//--- constructor, destructor
CNDimensional_NSFunc1_FVec(void) {}
~CNDimensional_NSFunc1_FVec(void) {}
virtual void FVec(CRowDouble &x,CRowDouble &fi,CObject &obj);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NSFunc1_FVec::FVec(CRowDouble &x,CRowDouble &fi,CObject &obj)
{
//--- this callback calculates
//--- f0(x0,x1) = 2*|x0|+|x1|
fi.Set(0,2*MathAbs(x[0])+MathAbs(x[1]));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Jac |
//+------------------------------------------------------------------+
class CNDimensional_Jac1 : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_Jac1(void) {}
~CNDimensional_Jac1(void) {}
virtual void Jac(double &x[],double &fi[],CMatrixDouble &jac,CObject &obj);
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=100*(x0+3)^4, |
//| f1(x0,x1)=(x1-3)^4 |
//| and Jacobian matrix J=[dfi/dxj] |
//+------------------------------------------------------------------+
void CNDimensional_Jac1::Jac(double &x[],double &fi[],CMatrixDouble &jac,
CObject &obj)
{
fi[0]=10*MathPow(x[0]+3,2);
fi[1]=MathPow(x[1]-3,2);
jac.Set(0,0,20*(x[0]+3));
jac.Set(0,1,0);
jac.Set(1,0,0);
jac.Set(1,1,2*(x[1]-3));
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_Jac1::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,
CObject &obj)
{
fi.Set(0,10*MathPow(x[0]+3,2));
fi.Set(1,MathPow(x[1]-3,2));
jac.Set(0,0,20*(x[0]+3));
jac.Set(0,1,0);
jac.Set(1,0,0);
jac.Set(1,1,2*(x[1]-3));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Jac |
//+------------------------------------------------------------------+
class CNDimensional_Jac2 : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_Jac2(void) {}
~CNDimensional_Jac2(void) {}
virtual void Jac(double &x[],double &fi[],CMatrixDouble &jac,CObject &obj);
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=x0^2+1 |
//| f1(x0,x1)=x1-1 |
//| and Jacobian matrix J=[dfi/dxj] |
//+------------------------------------------------------------------+
void CNDimensional_Jac2::Jac(double &x[],double &fi[],CMatrixDouble &jac,
CObject &obj)
{
fi[0]=x[0]*x[0]+1;
fi[1]=x[1]-1;
jac.Set(0,0,2*x[0]);
jac.Set(0,1,0);
jac.Set(1,0,0);
jac.Set(1,1,1);
}
//+------------------------------------------------------------------+
//| This callback calculates |
//| f0(x0,x1)=x0^2+1 |
//| f1(x0,x1)=x1-1 |
//| and Jacobian matrix J=[dfi/dxj] |
//+------------------------------------------------------------------+
void CNDimensional_Jac2::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,
CObject &obj)
{
fi.Set(0,x[0]*x[0]+1);
fi.Set(1,x[1]-1);
jac.Set(0,0,2*x[0]);
jac.Set(0,1,0);
jac.Set(1,0,0);
jac.Set(1,1,1);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_Jac |
//+------------------------------------------------------------------+
class CNDimensional_Bad_Jac : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_Bad_Jac(void) {}
~CNDimensional_Bad_Jac(void) {}
virtual void Jac(double &x[],double &fi[],CMatrixDouble &jac,CObject &obj);
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, |
//| i.e. function with incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Jac::Jac(double &x[],double &fi[],CMatrixDouble &jac,
CObject &obj)
{
fi[0]=10*MathPow(x[0]+3,2);
fi[1]=MathPow(x[1]-3,2);
jac.Set(0,0,20*(x[0]+3));
jac.Set(0,1,0);
jac.Set(1,0,1);
jac.Set(1,1,20*(x[1]-3));
}
//+------------------------------------------------------------------+
//| This callback calculates 'bad' function, |
//| i.e. function with incorrectly calculated derivatives |
//+------------------------------------------------------------------+
void CNDimensional_Bad_Jac::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,
CObject &obj)
{
fi.Set(0,10*MathPow(x[0]+3,2));
fi.Set(1,MathPow(x[1]-3,2));
jac.Set(0,0,20*(x[0]+3));
jac.Set(0,1,0);
jac.Set(1,0,1);
jac.Set(1,1,20*(x[1]-3));
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
class CNDimensional_NLCFunc1_Jac : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_NLCFunc1_Jac(void) {}
~CNDimensional_NLCFunc1_Jac(void) {}
virtual void Jac(double &x[],double &fi[],CMatrixDouble &jac,CObject &obj);
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NLCFunc1_Jac::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj)
{
//--- this callback calculates
//--- f0(x0,x1) = -x0+x1
//--- f1(x0,x1) = x0^2+x1^2-1
//--- and Jacobian matrix J = [dfi/dxj]
fi.Set(0,-x[0]+x[1]);
fi.Set(1,x[0]*x[0]+x[1]*x[1]-1.0);
jac.Set(0,0,-1.0);
jac.Set(0,1,+1.0);
jac.Row(1,x*2+0);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NLCFunc1_Jac::Jac(double &x[],double &fi[],CMatrixDouble &jac,CObject &obj)
{
//--- this callback calculates
//--- f0(x0,x1) = -x0+x1
//--- f1(x0,x1) = x0^2+x1^2-1
//--- and Jacobian matrix J = [dfi/dxj]
fi[0]=-x[0]+x[1];
fi[1]=x[0]*x[0]+x[1]*x[1]-1.0;
jac.Set(0,0,-1.0);
jac.Set(0,1,+1.0);
jac.Set(1,0,x[0]*2);
jac.Set(1,1,x[1]*2);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
class CNDimensional_NLCFunc2_Jac : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_NLCFunc2_Jac(void) {}
~CNDimensional_NLCFunc2_Jac(void) {}
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NLCFunc2_Jac::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj)
{
//--- this callback calculates
//--- f0(x0,x1,x2) = x0+x1
//--- f1(x0,x1,x2) = x2-exp(x0)
//--- f2(x0,x1,x2) = x0^2+x1^2-1
//--- and Jacobian matrix J = [dfi/dxj]
fi.Set(0,x[0]+x[1]);
fi.Set(1,x[2]-MathExp(x[0]));
fi.Set(2,x[0]*x[0]+x[1]*x[1]-1.0);
jac.Set(0,0,1.0);
jac.Set(0,1,1.0);
jac.Set(0,2,0.0);
jac.Set(1,0,-MathExp(x[0]));
jac.Set(1,1,0.0);
jac.Set(1,2,1.0);
jac.Set(2,0,2*x[0]);
jac.Set(2,1,2*x[1]);
jac.Set(2,2,0.0);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
class CNDimensional_NSFunc1_Jac : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_NSFunc1_Jac(void) {}
~CNDimensional_NSFunc1_Jac(void) {}
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NSFunc1_Jac::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj)
{
//--- this callback calculates
//--- f0(x0,x1) = 2*|x0|+|x1|
//--- and Jacobian matrix J = [ df0/dx0, df0/dx1 ]
fi.Set(0,2*MathAbs(x[0])+MathAbs(x[1]));
jac.Set(0,0,2*MathSign(x[0]));
jac.Set(0,1,MathSign(x[1]));
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
class CNDimensional_NSFunc2_Jac : public CNDimensional_Jac
{
public:
//--- constructor, destructor
CNDimensional_NSFunc2_Jac(void) {}
~CNDimensional_NSFunc2_Jac(void) {}
virtual void Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj);
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void CNDimensional_NSFunc2_Jac::Jac(CRowDouble &x,CRowDouble &fi,CMatrixDouble &jac,CObject &obj)
{
//--- this callback calculates function vector
//--- f0(x0,x1) = 2*|x0|+x1
//--- f1(x0,x1) = x0-1
//--- f2(x0,x1) = -x1-1
//--- and Jacobian matrix J
//--- [ df0/dx0 df0/dx1 ]
//--- J = [ df1/dx0 df1/dx1 ]
//--- [ df2/dx0 df2/dx1 ]
fi.Set(0,2*MathAbs(x[0])+MathAbs(x[1]));
jac.Set(0,0,2*MathSign(x[0]));
jac.Set(0,1,MathSign(x[1]));
fi.Set(1,x[0]-1);
jac.Set(1,0,1);
jac.Set(1,1,0);
fi.Set(2,-x[1]-1);
jac.Set(2,0,0);
jac.Set(2,1,-1);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_PFunc |
//+------------------------------------------------------------------+
class CNDimensional_CX_1_Func : public CNDimensional_PFunc
{
public:
//--- constructor, destructor
CNDimensional_CX_1_Func(void) {}
~CNDimensional_CX_1_Func(void) {}
virtual void PFunc(double &c[],double &x[],double &func,CObject &obj);
virtual void PFunc(CRowDouble &c,CRowDouble &x,double &func,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)) where x is a |
//| position on X-axis and c is adjustable parameter |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Func::PFunc(CRowDouble &c,CRowDouble &x,double &func,
CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
}
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)) where x is a |
//| position on X-axis and c is adjustable parameter |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Func::PFunc(double &c[],double &x[],double &func,
CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_PFunc |
//+------------------------------------------------------------------+
class CNDimensional_Debt_Func : public CNDimensional_PFunc
{
public:
//--- constructor, destructor
CNDimensional_Debt_Func(void) {}
~CNDimensional_Debt_Func(void) {}
virtual void PFunc(double &c[],double &x[],double &func,CObject &obj);
virtual void PFunc(CRowDouble &c,CRowDouble &x,double &func,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates |
//| f(c,x)=c[0]*(1+c[1]*(pow(x[0]-1999,c[2])-1)) |
//+------------------------------------------------------------------+
void CNDimensional_Debt_Func::PFunc(double &c[],double &x[],double &func,
CObject &obj)
{
func=c[0]*(1+c[1]*(MathPow(x[0]-1999,c[2])-1));
}
//+------------------------------------------------------------------+
//| This callback calculates |
//| f(c,x)=c[0]*(1+c[1]*(pow(x[0]-1999,c[2])-1)) |
//+------------------------------------------------------------------+
void CNDimensional_Debt_Func::PFunc(CRowDouble &c,CRowDouble &x,double &func,
CObject &obj)
{
func=c[0]*(1+c[1]*(MathPow(x[0]-1999,c[2])-1));
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_PGrad |
//+------------------------------------------------------------------+
class CNDimensional_CX_1_Grad : public CNDimensional_PGrad
{
public:
//--- constructor, destructor
CNDimensional_CX_1_Grad(void) {}
~CNDimensional_CX_1_Grad(void) {}
virtual void PGrad(double &c[],double &x[],double &func,double &grad[],CObject &obj);
virtual void PGrad(CRowDouble &c,CRowDouble &x,double &func,CRowDouble &grad,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)) and gradient |
//| G={df/dc[i]} where x is a position on X-axis and c is adjustable |
//| parameter. |
//| IMPORTANT: gradient is calculated with respect to C, not to X |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Grad::PGrad(double &c[],double &x[],double &func,
double &grad[],CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
grad[0]=-MathPow(x[0],2)*func;
}
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)) and gradient |
//| G={df/dc[i]} where x is a position on X-axis and c is adjustable |
//| parameter. |
//| IMPORTANT: gradient is calculated with respect to C, not to X |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Grad::PGrad(CRowDouble &c,CRowDouble &x,double &func,
CRowDouble &grad,CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
grad.Set(0,-MathPow(x[0],2)*func);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_PHess |
//+------------------------------------------------------------------+
class CNDimensional_CX_1_Hess : public CNDimensional_PHess
{
public:
//--- constructor, destructor
CNDimensional_CX_1_Hess(void) {}
~CNDimensional_CX_1_Hess(void) {}
virtual void PHess(double &c[],double &x[],double &func,double &grad[],CMatrixDouble &hess,CObject &obj);
virtual void PHess(CRowDouble &c,CRowDouble &x,double &func,CRowDouble &grad,CMatrixDouble &hess,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)), gradient |
//| G={df/dc[i]} and Hessian H={d2f/(dc[i]*dc[j])} where x is a |
//| position on X-axis and c is adjustable parameter. |
//| IMPORTANT: gradient/Hessian are calculated with respect to C, |
//| not to X |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Hess::PHess(double &c[],double &x[],double &func,
double &grad[],CMatrixDouble &hess,
CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
grad[0]=-MathPow(x[0],2)*func;
hess.Set(0,0,MathPow(x[0],4)*func);
}
//+------------------------------------------------------------------+
//| This callback calculates f(c,x)=exp(-c0*sqr(x0)), gradient |
//| G={df/dc[i]} and Hessian H={d2f/(dc[i]*dc[j])} where x is a |
//| position on X-axis and c is adjustable parameter. |
//| IMPORTANT: gradient/Hessian are calculated with respect to C, |
//| not to X |
//+------------------------------------------------------------------+
void CNDimensional_CX_1_Hess::PHess(CRowDouble &c,CRowDouble &x,double &func,
CRowDouble &grad,CMatrixDouble &hess,
CObject &obj)
{
func=MathExp(-c[0]*MathPow(x[0],2));
grad.Set(0,-MathPow(x[0],2)*func);
hess.Set(0,0,MathPow(x[0],4)*func);
}
//+------------------------------------------------------------------+
//| Derived class from CNDimensional_ODE_RP |
//+------------------------------------------------------------------+
class CNDimensional_ODE_Function_1_Dif : public CNDimensional_ODE_RP
{
public:
//--- constructor, destructor
CNDimensional_ODE_Function_1_Dif(void) {}
~CNDimensional_ODE_Function_1_Dif(void) {}
virtual void ODE_RP(double &y[],double x,double &dy[],CObject &obj);
virtual void ODE_RP(CRowDouble &y,double x,CRowDouble &dy,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(y[],x)=-y[0] |
//+------------------------------------------------------------------+
void CNDimensional_ODE_Function_1_Dif::ODE_RP(double &y[],double x,double &dy[],CObject &obj)
{
dy[0]=-y[0];
}
//+------------------------------------------------------------------+
//| This callback calculates f(y[],x)=-y[0] |
//+------------------------------------------------------------------+
void CNDimensional_ODE_Function_1_Dif::ODE_RP(CRowDouble &y,double x,CRowDouble &dy,CObject &obj)
{
dy.Set(0,-y[0]);
}
//+------------------------------------------------------------------+
//| Derived class from CIntegrator1_Func |
//+------------------------------------------------------------------+
class CInt_Function_1_Func : public CIntegrator1_Func
{
public:
//--- constructor, destructor
CInt_Function_1_Func(void) {}
~CInt_Function_1_Func(void) {}
virtual void Int_Func(double x,double xminusa,double bminusx,double &y,CObject &obj);
};
//+------------------------------------------------------------------+
//| This callback calculates f(x)=exp(x) |
//+------------------------------------------------------------------+
void CInt_Function_1_Func::Int_Func(double x,double xminusa,double bminusx,
double &y,CObject &obj)
{
y=MathExp(x);
}
//+------------------------------------------------------------------+
//| A comparison of the two numbers |
//+------------------------------------------------------------------+
bool Doc_Test_Int(int val,int test_val)
{
return(val==test_val);
}
//+------------------------------------------------------------------+
//| A comparison of the two numbers |
//+------------------------------------------------------------------+
bool Doc_Test_Bool(bool val,bool test_val)
{
return(val==test_val);
}
//+------------------------------------------------------------------+
//| A comparison of two numbers with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real(double val,double test_val,double _threshold)
{
//--- calculation
double s=_threshold>=0?1.0:MathAbs(test_val);
double threshold=MathAbs(_threshold);
//--- return result
return(MathAbs(val-test_val)/s<=threshold);
}
//+------------------------------------------------------------------+
//| A comparison of two numbers with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Complex(complex &val,complex &test_val,double _threshold)
{
//--- calculation
double s=_threshold>=0?1.0:CMath::AbsComplex(test_val);
double threshold=MathAbs(_threshold);
//--- return result
return(CMath::AbsComplex(val-test_val)/s<=threshold);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors |
//+------------------------------------------------------------------+
bool Doc_Test_Int_Vector(int &val[],int &test_val[])
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
if(val[i]!=test_val[i])
return(false);
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors |
//+------------------------------------------------------------------+
bool Doc_Test_Int_Vector(CRowInt &val,CRowInt &test_val)
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
if(val[i]!=test_val[i])
return(false);
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors |
//+------------------------------------------------------------------+
bool Doc_Test_Int_Vector(CRowInt &val,int &test_val[])
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
if(val[i]!=test_val[i])
return(false);
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| Comparison of the two matrices |
//+------------------------------------------------------------------+
bool Doc_Test_Int_Matrix(CMatrixInt &val,CMatrixInt &test_val)
{
//--- check
if(CAp::Rows(val)!=CAp::Rows(test_val))
return(false);
//--- check
if(CAp::Cols(val)!=CAp::Cols(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Rows(val); i++)
for(int j=0; j<CAp::Cols(val); j++)
if(val.Get(i,j)!=test_val.Get(i,j))
return(false);
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Vector(double &val[],double &test_val[],double _threshold)
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
{
double s=_threshold>=0?1.0:MathAbs(test_val[i]);
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val[i]-test_val[i])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Vector(CRowDouble &val,CRowDouble &test_val,double _threshold)
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
{
double s=_threshold>=0?1.0:MathAbs(test_val[i]);
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val[i]-test_val[i])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Vector(CRowDouble &val,double &test_val[],double _threshold)
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
{
double s=_threshold>=0?1.0:MathAbs(test_val[i]);
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val[i]-test_val[i])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Vector(CRowDouble &val,vector<double> &test_val,double _threshold)
{
//--- check
if(CAp::Len(val)!=(int)test_val.Size())
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
{
double s=_threshold>=0?1.0:MathAbs(test_val[i]);
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val[i]-test_val[i])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Matrix(CMatrixDouble &val,CMatrixDouble &test_val,double _threshold)
{
//--- check
if(CAp::Rows(val)!=CAp::Rows(test_val))
return(false);
//--- check
if(CAp::Cols(val)!=CAp::Cols(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Rows(val); i++)
for(int j=0; j<CAp::Cols(val); j++)
{
double s=_threshold>=0?1.0:MathAbs(test_val.Get(i,j));
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val.Get(i,j)-test_val.Get(i,j))/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Real_Matrix(CMatrixDouble &val,matrix<double> &test_val,double _threshold)
{
//--- check
if(CAp::Rows(val)!=test_val.Rows())
return(false);
//--- check
if(CAp::Cols(val)!=test_val.Cols())
return(false);
//--- comparison
for(int i=0; i<CAp::Rows(val); i++)
for(int j=0; j<CAp::Cols(val); j++)
{
double s=_threshold>=0?1.0:MathAbs(test_val[i,j]);
double threshold=MathAbs(_threshold);
//--- check
if(MathAbs(val.Get(i,j)-test_val[i,j])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two vectors with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Complex_Vector(complex &val[],complex &test_val[],double _threshold)
{
//--- check
if(CAp::Len(val)!=CAp::Len(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Len(val); i++)
{
double s=_threshold>=0?1.0:CMath::AbsComplex(test_val[i]);
double threshold=MathAbs(_threshold);
//--- check
if(CMath::AbsComplex(val[i]-test_val[i])/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| A comparison of two matrices with an accuracy |
//+------------------------------------------------------------------+
bool Doc_Test_Complex_Matrix(CMatrixComplex &val,CMatrixComplex &test_val,double _threshold)
{
//--- check
if(CAp::Rows(val)!=CAp::Rows(test_val))
return(false);
//--- check
if(CAp::Cols(val)!=CAp::Cols(test_val))
return(false);
//--- comparison
for(int i=0; i<CAp::Rows(val); i++)
for(int j=0; j<CAp::Cols(val); j++)
{
double s=_threshold>=0?1.0:CMath::AbsComplex(test_val.Get(i,j));
double threshold=MathAbs(_threshold);
//--- check
if(CMath::AbsComplex(val.Get(i,j)-test_val.Get(i,j))/s>threshold)
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| Add to the vector random element |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Adding_Element(int &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- increasing the length of the vector
ArrayResize(x,n+1);
//--- set value
x[n]=MathRand();
}
//+------------------------------------------------------------------+
//| Add to the vector random element |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Adding_Element(double &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- increasing the length of the vector
ArrayResize(x,n+1);
//--- set value
x[n]=CMath::RandomReal();
}
//+------------------------------------------------------------------+
//| Add to the vector random element |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Adding_Element(CRowDouble &x)
{
//--- size calculation
int n=x.Size();
//--- increasing the length of the vector
x.Resize(n+1);
//--- set value
x.Set(n,CMath::RandomReal());
}
//+------------------------------------------------------------------+
//| Add to the vector random element |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Adding_Element(complex &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- increasing the length of the vector
ArrayResize(x,n+1);
//--- set value
x[n].real=CMath::RandomReal();
x[n].imag=CMath::RandomReal();
}
//+------------------------------------------------------------------+
//| Removing the number of vector |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Deleting_Element(int &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- reduction length of the vector
ArrayResize(x,n-1);
}
//+------------------------------------------------------------------+
//| Removing the number of vector |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Deleting_Element(double &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- reduction length of the vector
ResetLastError();
CAp::Assert(ArrayResize(x,n-1)==n-1,StringFormat("%s: error of resize array: %6d",__FUNCTION__,GetLastError()));
}
//+------------------------------------------------------------------+
//| Removing the number of vector |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Deleting_Element(CRowDouble &x)
{
//--- size calculation
int n=x.Size();
//--- reduction length of the vector
x.Resize(n-1);
}
//+------------------------------------------------------------------+
//| Removing the number of vector |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Deleting_Element(CRowInt &x)
{
//--- size calculation
int n=x.Size();
//--- reduction length of the vector
x.Resize(n-1);
}
//+------------------------------------------------------------------+
//| Removing the number of vector |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Deleting_Element(complex &x[])
{
//--- size calculation
int n=ArraySize(x);
//--- reduction length of the vector
ArrayResize(x,n-1);
}
//+------------------------------------------------------------------+
//| Add a row in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Row(CMatrixInt &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n+1,m);
//--- set values
for(int i=0; i<m; i++)
x.Set(n,i,MathRand());
}
//+------------------------------------------------------------------+
//| Add a row in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Row(CMatrixDouble &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n+1,m);
//--- set values
for(int i=0; i<m; i++)
x.Set(n,i,CMath::RandomReal());
}
//+------------------------------------------------------------------+
//| Add a row in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Row(CMatrixComplex &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n+1,m);
//--- set values
for(int i=0; i<m; i++)
{
x.SetRe(n,i,CMath::RandomReal());
x.SetIm(n,i,CMath::RandomReal());
}
}
//+------------------------------------------------------------------+
//| Deleting a row from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Row(CMatrixInt &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n-1,m);
}
//+------------------------------------------------------------------+
//| Deleting a row from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Row(CMatrixDouble &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n-1,m);
}
//+------------------------------------------------------------------+
//| Deleting a row from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Row(CMatrixComplex &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n-1,m);
}
//+------------------------------------------------------------------+
//| Add a col in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Col(CMatrixInt &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n,m+1);
//--- set values
for(int i=0; i<m; i++)
x.Set(i,m,MathRand());
}
//+------------------------------------------------------------------+
//| Add a col in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Col(CMatrixDouble &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n,m+1);
//--- set values
for(int i=0; i<m; i++)
x.Set(i,m,CMath::RandomReal());
}
//+------------------------------------------------------------------+
//| Add a col in the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Adding_Col(CMatrixComplex &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- increase the dimension
x.Resize(n,m+1);
//--- set values
for(int i=0; i<m; i++)
{
x.SetRe(i,m,CMath::RandomReal());
x.SetIm(i,m,CMath::RandomReal());
}
}
//+------------------------------------------------------------------+
//| Deleting a col from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Col(CMatrixInt &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n,m-1);
}
//+------------------------------------------------------------------+
//| Deleting a col from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Col(CMatrixDouble &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n,m-1);
}
//+------------------------------------------------------------------+
//| Deleting a col from the matrix |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Deleting_Col(CMatrixComplex &x)
{
//--- cols and rows calculation
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- reduction of dimension
x.Resize(n,m-1);
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Value(int &x[],int &val)
{
//--- size calculation
int n=ArraySize(x);
//--- set value
if(n!=0)
x[CMath::RandomInteger(n)]=val;
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Value(double &x[],double val)
{
//--- size calculation
int n=ArraySize(x);
//--- set value
if(n!=0)
x[CMath::RandomInteger(n)]=val;
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Value(CRowDouble &x,double val)
{
//--- size calculation
int n=x.Size();
//--- set value
if(n!=0)
x.Set(CMath::RandomInteger(n),val);
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Vector_By_Value(complex &x[],complex &val)
{
//--- size calculation
int n=ArraySize(x);
//--- set value
if(n!=0)
x[CMath::RandomInteger(n)]=val;
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Value(CMatrixInt &x,int val)
{
//--- get cols and rows
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- set value
if(n!=0 && m!=0)
x.Set(CMath::RandomInteger(n),CMath::RandomInteger(m),val);
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Value(CMatrixDouble &x,double val)
{
//--- get cols and rows
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- set value
if(n!=0 && m!=0)
x.Set(CMath::RandomInteger(n),CMath::RandomInteger(m),val);
}
//+------------------------------------------------------------------+
//| Set number to a random position |
//+------------------------------------------------------------------+
void Spoil_Matrix_By_Value(CMatrixComplex &x,complex &val)
{
//--- get cols and rows
int n=CAp::Rows(x);
int m=CAp::Cols(x);
//--- set value
if(n!=0 && m!=0)
x.Set(CMath::RandomInteger(n),CMath::RandomInteger(m),val);
}
//+------------------------------------------------------------------+
//| Function test and exception handling |
//+------------------------------------------------------------------+
bool Func_spoil_scenario(int _spoil_scenario,bool &_TestResult)
{
if(CAp::exception_happened==true)
{
//--- check
if(_spoil_scenario==-1)
_TestResult=false;
//--- reset exception
CAp::exception_happened=false;
//--- return result
return(false);
}
//--- return result
return(true);
}
//+------------------------------------------------------------------+
//| Nearest neighbor search, KNN queries |
//+------------------------------------------------------------------+
void TEST_NNeighbor_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
int nx;
int ny;
int normtype;
CKDTreeShell kdt;
double x[];
CMatrixDouble r;
int k;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- allocation
a.Resize(4,2);
//--- initialization
a.Set(0,0,0);
a.Set(0,1,0);
a.Set(1,0,0);
a.Set(1,1,1);
a.Set(2,0,1);
a.Set(2,1,0);
a.Set(3,0,1);
a.Set(3,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
//--- change values
nx=2;
ny=0;
normtype=2;
//--- function call
CAlglib::KDTreeBuild(a,nx,ny,normtype,kdt);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=-1;
x[1]=0;
//--- function call
k=CAlglib::KDTreeQueryKNN(kdt,x,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(k,1);
//--- function call
CAlglib::KDTreeQueryResultsX(kdt,r);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(1,2);
//--- initialization
tempmatrix.Set(0,0,0);
tempmatrix.Set(0,1,0);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(r,tempmatrix,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Subsequent queries; buffered functions must use previously |
//| allocated storage (if large enough), so buffer may contain some |
//| info from previous call |
//+------------------------------------------------------------------+
void TEST_NNeighbor_T_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
int nx;
int ny;
int normtype;
CKDTreeShell kdt;
double x[];
CMatrixDouble rx;
int k;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- allocation
a.Resize(4,2);
//--- initialization
a.Set(0,0,0);
a.Set(0,1,0);
a.Set(1,0,0);
a.Set(1,1,1);
a.Set(2,0,1);
a.Set(2,1,0);
a.Set(3,0,1);
a.Set(3,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
//--- change values
nx=2;
ny=0;
normtype=2;
//--- allocation
rx.Resize(0,0);
//--- function call
CAlglib::KDTreeBuild(a,nx,ny,normtype,kdt);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=2;
x[1]=0;
//--- function call
k=CAlglib::KDTreeQueryKNN(kdt,x,2,true);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(k,2);
//--- function call
CAlglib::KDTreeQueryResultsX(kdt,rx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,1);
tempmatrix.Set(0,1,0);
tempmatrix.Set(1,0,1);
tempmatrix.Set(1,1,1);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(rx,tempmatrix,0.05);
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=-2;
x[1]=0;
//--- function call
k=CAlglib::KDTreeQueryKNN(kdt,x,1,true);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(k,1);
//--- function call
CAlglib::KDTreeQueryResultsX(kdt,rx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,0);
tempmatrix.Set(0,1,0);
tempmatrix.Set(1,0,1);
tempmatrix.Set(1,1,1);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(rx,tempmatrix,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Serialization of KD-trees |
//+------------------------------------------------------------------+
void TEST_NNeighbor_D_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
int nx;
int ny;
int normtype;
CKDTreeShell kdt0;
CKDTreeShell kdt1;
string s;
double x[];
CMatrixDouble r0;
CMatrixDouble r1;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- allocation
a.Resize(4,2);
//--- initialization
a.Set(0,0,0);
a.Set(0,1,0);
a.Set(1,0,0);
a.Set(1,1,1);
a.Set(2,0,1);
a.Set(2,1,0);
a.Set(3,0,1);
a.Set(3,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
//--- change values
nx=2;
ny=0;
normtype=2;
//--- allocation
r0.Resize(0,0);
r1.Resize(0,0);
//--- Build tree and serialize it
CAlglib::KDTreeBuild(a,nx,ny,normtype,kdt0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::KDTreeSerialize(kdt0,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::KDTreeUnserialize(s,kdt1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Compare results from KNN queries
ArrayResize(x,2);
//--- initialization
x[0]=-1;
x[1]=0;
//--- function call
CAlglib::KDTreeQueryKNN(kdt0,x,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::KDTreeQueryResultsX(kdt0,r0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::KDTreeQueryKNN(kdt1,x,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::KDTreeQueryResultsX(kdt1,r1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(1,2);
//--- initialization
tempmatrix.Set(0,0,0);
tempmatrix.Set(0,1,0);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(r0,tempmatrix,0.05);
//--- allocation
tempmatrix.Resize(1,2);
//--- initialization
tempmatrix.Set(0,0,0);
tempmatrix.Set(0,1,0);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(r1,tempmatrix,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Basic functionality (moments,adev,median,percentile) |
//+------------------------------------------------------------------+
void TEST_BaseStat_D_Base(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double mean;
double variance;
double skewness;
double kurtosis;
double adev;
double p;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,10);
//--- initialization
for(int i=0; i<10; i++)
x[i]=i*i;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- Here we demonstrate calculation of sample moments
//--- (mean,variance,skewness,kurtosis)
CAlglib::SampleMoments(x,mean,variance,skewness,kurtosis);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(mean,28.5,0.01);
_TestResult=_TestResult && Doc_Test_Real(variance,801.1667,0.01);
_TestResult=_TestResult && Doc_Test_Real(skewness,0.5751,0.01);
_TestResult=_TestResult && Doc_Test_Real(kurtosis,-1.2666,0.01);
//--- Average deviation
CAlglib::SampleAdev(x,adev);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(adev,23.2,0.01);
//--- Median and percentile
CAlglib::SampleMedian(x,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,20.5,0.01);
p=0.5;
//--- check
if(_spoil_scenario==3)
p=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
p=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
p=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::SamplePercentile(x,p,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,20.5,0.01);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Correlation (covariance) between two random variables |
//+------------------------------------------------------------------+
void TEST_BaseStat_D_C2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- We have two samples - x and y,and want to measure dependency between them
ArrayResize(x,10);
//--- initialization
for(int i=0; i<10; i++)
x[i]=i*i;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,10);
//--- initialization
for(int i=0; i<10; i++)
y[i]=i;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- Three dependency measures are calculated:
//--- * covariation
//--- * Pearson correlation
//--- * Spearman rank correlation
v=CAlglib::Cov2(x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,82.5,0.001);
//--- function call
v=CAlglib::PearsonCorr2(x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.9627,0.001);
//--- function call
v=CAlglib::SpearmanCorr2(x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,1.000,0.001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Correlation (covariance) between components of random vector |
//+------------------------------------------------------------------+
void TEST_BaseStat_D_CM(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
CMatrixDouble c;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- X is a sample matrix:
//--- * I-th row corresponds to I-th observation
//--- * J-th column corresponds to J-th variable
x.Resize(5,3);
//--- initialization
x.Set(0,0,1);
x.Set(0,1,0);
x.Set(0,2,1);
x.Set(1,0,1);
x.Set(1,1,1);
x.Set(1,2,0);
x.Set(2,0,-1);
x.Set(2,1,1);
x.Set(2,2,0);
x.Set(3,0,-2);
x.Set(3,1,-1);
x.Set(3,2,1);
x.Set(4,0,-1);
x.Set(4,1,0);
x.Set(4,2,9);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- Three dependency measures are calculated:
//--- * covariation
//--- * Pearson correlation
//--- * Spearman rank correlation
//--- Result is stored into C,with C[i,j] equal to correlation
//--- (covariance) between I-th and J-th variables of X.
CAlglib::CovM(x,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,3);
//--- initialization
tempmatrix.Set(0,0,1.8);
tempmatrix.Set(0,1,0.6);
tempmatrix.Set(0,2,-1.4);
tempmatrix.Set(1,0,0.6);
tempmatrix.Set(1,1,0.7);
tempmatrix.Set(1,2,-0.8);
tempmatrix.Set(2,0,-1.4);
tempmatrix.Set(2,1,-0.8);
tempmatrix.Set(2,2,14.7);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
//--- function call
CAlglib::PearsonCorrM(x,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,3);
//--- initialization
tempmatrix.Set(0,0,1);
tempmatrix.Set(0,1,0.535);
tempmatrix.Set(0,2,-0.272);
tempmatrix.Set(1,0,0.535);
tempmatrix.Set(1,1,1);
tempmatrix.Set(1,2,-0.249);
tempmatrix.Set(2,0,-0.272);
tempmatrix.Set(2,1,-0.249);
tempmatrix.Set(2,2,1);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
//--- function call
CAlglib::SpearmanCorrM(x,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,3);
//--- initialization
tempmatrix.Set(0,0,1);
tempmatrix.Set(0,1,0.556);
tempmatrix.Set(0,2,-0.306);
tempmatrix.Set(1,0,0.556);
tempmatrix.Set(1,1,1);
tempmatrix.Set(1,2,-0.75);
tempmatrix.Set(2,0,-0.306);
tempmatrix.Set(2,1,-0.75);
tempmatrix.Set(2,2,1);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Correlation (covariance) between two random vectors |
//+------------------------------------------------------------------+
void TEST_BaseStat_D_CM2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
CMatrixDouble y;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- X and Y are sample matrices:
//--- * I-th row corresponds to I-th observation
//--- * J-th column corresponds to J-th variable
x.Resize(5,3);
//--- initialization
x.Set(0,0,1);
x.Set(0,1,0);
x.Set(0,2,1);
x.Set(1,0,1);
x.Set(1,1,1);
x.Set(1,2,0);
x.Set(2,0,-1);
x.Set(2,1,1);
x.Set(2,2,0);
x.Set(3,0,-2);
x.Set(3,1,-1);
x.Set(3,2,1);
x.Set(4,0,-1);
x.Set(4,1,0);
x.Set(4,2,9);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- allocation
y.Resize(5,2);
//--- initialization
y.Set(0,0,2);
y.Set(0,1,3);
y.Set(1,0,2);
y.Set(1,1,1);
y.Set(2,0,-1);
y.Set(2,1,6);
y.Set(3,0,-9);
y.Set(3,1,9);
y.Set(4,0,7);
y.Set(4,1,1);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(y,CInfOrNaN::NegativeInfinity());
CMatrixDouble c;
//--- Three dependency measures are calculated:
//--- * covariation
//--- * Pearson correlation
//--- * Spearman rank correlation
//--- Result is stored into C,with C[i,j] equal to correlation
//--- (covariance) between I-th variable of X and J-th variable of Y.
CAlglib::CovM2(x,y,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,2);
//--- initialization
tempmatrix.Set(0,0,4.1);
tempmatrix.Set(0,1,-3.25);
tempmatrix.Set(1,0,2.45);
tempmatrix.Set(1,1,-1.5);
tempmatrix.Set(2,0,13.45);
tempmatrix.Set(2,1,-5.75);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
//--- function call
CAlglib::PearsonCorrM2(x,y,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,2);
//--- initialization
tempmatrix.Set(0,0,0.519);
tempmatrix.Set(0,1,-0.699);
tempmatrix.Set(1,0,0.497);
tempmatrix.Set(1,1,-0.518);
tempmatrix.Set(2,0,0.596);
tempmatrix.Set(2,1,-0.433);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
//--- function call
CAlglib::SpearmanCorrM2(x,y,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(3,2);
//--- initialization
tempmatrix.Set(0,0,0.541);
tempmatrix.Set(0,1,-0.649);
tempmatrix.Set(1,0,0.216);
tempmatrix.Set(1,1,-0.433);
tempmatrix.Set(2,0,0.433);
tempmatrix.Set(2,1,-0.135);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,tempmatrix,0.01);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Tests ability to detect errors in inputs |
//+------------------------------------------------------------------+
void TEST_BaseStat_T_Base(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double mean;
double variance;
double skewness;
double kurtosis;
double adev;
double p;
double v;
double x1[];
double x2[];
double x3[];
double x4[];
double x5[];
double x6[];
double x7[];
double x8[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<34; _spoil_scenario++)
{
//--- first,we test short form of functions
ArrayResize(x1,10);
//--- initialization
for(int i=0; i<10; i++)
x1[i]=i*i;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x1,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::SampleMoments(x1,mean,variance,skewness,kurtosis);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x2,10);
//--- initialization
for(int i=0; i<10; i++)
x2[i]=i*i;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(x2,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(x2,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(x2,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::SampleAdev(x2,adev);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x3,10);
//--- initialization
for(int i=0; i<10; i++)
x3[i]=i*i;
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x3,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(x3,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(x3,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::SampleMedian(x3,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x4,10);
//--- initialization
for(int i=0; i<10; i++)
x4[i]=i*i;
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(x4,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(x4,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(x4,CInfOrNaN::NegativeInfinity());
//--- change value
p=0.5;
//--- check
if(_spoil_scenario==12)
p=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
p=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
p=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::SamplePercentile(x4,p,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- and then we test full form
ArrayResize(x5,10);
//--- initialization
for(int i=0; i<10; i++)
x5[i]=i*i;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(x5,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(x5,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(x5,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Deleting_Element(x5);
//--- function call
CAlglib::SampleMoments(x5,10,mean,variance,skewness,kurtosis);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x6,10);
//--- initialization
for(int i=0; i<10; i++)
x6[i]=i*i;
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Value(x6,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Value(x6,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==21)
Spoil_Vector_By_Value(x6,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==22)
Spoil_Vector_By_Deleting_Element(x6);
//--- function call
CAlglib::SampleAdev(x6,10,adev);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x7,10);
//--- initialization
for(int i=0; i<10; i++)
x7[i]=i*i;
//--- check
if(_spoil_scenario==23)
Spoil_Vector_By_Value(x7,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==24)
Spoil_Vector_By_Value(x7,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==25)
Spoil_Vector_By_Value(x7,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==26)
Spoil_Vector_By_Deleting_Element(x7);
//--- function call
CAlglib::SampleMedian(x7,10,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x8,10);
//--- initialization
for(int i=0; i<10; i++)
x8[i]=i*i;
//--- check
if(_spoil_scenario==27)
Spoil_Vector_By_Value(x8,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==28)
Spoil_Vector_By_Value(x8,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==29)
Spoil_Vector_By_Value(x8,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==30)
Spoil_Vector_By_Deleting_Element(x8);
//--- change value
p=0.5;
//--- check
if(_spoil_scenario==31)
p=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==32)
p=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==33)
p=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::SamplePercentile(x8,10,p,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Tests ability to detect errors in inputs |
//+------------------------------------------------------------------+
void TEST_BaseStat_T_CovCorr(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double v;
CMatrixDouble c;
double x1[];
double x2[];
double x3[];
double y1[];
double y2[];
double y3[];
double x1a[];
double x2a[];
double x3a[];
double y1a[];
double y2a[];
double y3a[];
CMatrixDouble x4;
CMatrixDouble x5;
CMatrixDouble x6;
CMatrixDouble x7;
CMatrixDouble x8;
CMatrixDouble x9;
CMatrixDouble x10;
CMatrixDouble x11;
CMatrixDouble x12;
CMatrixDouble x13;
CMatrixDouble x14;
CMatrixDouble x15;
CMatrixDouble y10;
CMatrixDouble y11;
CMatrixDouble y12;
CMatrixDouble y13;
CMatrixDouble y14;
CMatrixDouble y15;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<126; _spoil_scenario++)
{
//--- 2-sample short-form cov/corr are tested
ArrayResize(x1,10);
//--- initialization
for(int i=0; i<10; i++)
x1[i]=i*i;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x1,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x1);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x1);
//--- allocation
ArrayResize(y1,10);
//--- initialization
for(int i=0; i<10; i++)
y1[i]=i;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y1,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y1);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y1);
//--- function call
v=CAlglib::Cov2(x1,y1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x2,10);
//--- initialization
for(int i=0; i<10; i++)
x2[i]=i*i;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(x2,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(x2,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(x2,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Adding_Element(x2);
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(x2);
//--- allocation
ArrayResize(y2,10);
//--- initialization
for(int i=0; i<10; i++)
y2[i]=i;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(y2,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(y2,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(y2,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Adding_Element(y2);
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Deleting_Element(y2);
//--- function call
v=CAlglib::PearsonCorr2(x2,y2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x3,10);
//--- initialization
for(int i=0; i<10; i++)
x3[i]=i*i;
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Value(x3,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==21)
Spoil_Vector_By_Value(x3,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==22)
Spoil_Vector_By_Value(x3,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==23)
Spoil_Vector_By_Adding_Element(x3);
//--- check
if(_spoil_scenario==24)
Spoil_Vector_By_Deleting_Element(x3);
//--- allocation
ArrayResize(y3,10);
//--- initialization
for(int i=0; i<10; i++)
y3[i]=i;
//--- check
if(_spoil_scenario==25)
Spoil_Vector_By_Value(y3,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==26)
Spoil_Vector_By_Value(y3,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==27)
Spoil_Vector_By_Value(y3,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==28)
Spoil_Vector_By_Adding_Element(y3);
//--- check
if(_spoil_scenario==29)
Spoil_Vector_By_Deleting_Element(y3);
//--- function call
v=CAlglib::SpearmanCorr2(x3,y3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- 2-sample full-form cov/corr are tested
ArrayResize(x1a,10);
//--- initialization
for(int i=0; i<10; i++)
x1a[i]=i*i;
//--- check
if(_spoil_scenario==30)
Spoil_Vector_By_Value(x1a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==31)
Spoil_Vector_By_Value(x1a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==32)
Spoil_Vector_By_Value(x1a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==33)
Spoil_Vector_By_Deleting_Element(x1a);
//--- allocation
ArrayResize(y1a,10);
//--- initialization
for(int i=0; i<10; i++)
y1a[i]=i;
//--- check
if(_spoil_scenario==34)
Spoil_Vector_By_Value(y1a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==35)
Spoil_Vector_By_Value(y1a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==36)
Spoil_Vector_By_Value(y1a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==37)
Spoil_Vector_By_Deleting_Element(y1a);
//--- function call
v=CAlglib::Cov2(x1a,y1a,10);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x2a,10);
//--- initialization
for(int i=0; i<10; i++)
x2a[i]=i*i;
//--- check
if(_spoil_scenario==38)
Spoil_Vector_By_Value(x2a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==39)
Spoil_Vector_By_Value(x2a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==40)
Spoil_Vector_By_Value(x2a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==41)
Spoil_Vector_By_Deleting_Element(x2a);
//--- allocation
ArrayResize(y2a,10);
//--- initialization
for(int i=0; i<10; i++)
y2a[i]=i;
//--- check
if(_spoil_scenario==42)
Spoil_Vector_By_Value(y2a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==43)
Spoil_Vector_By_Value(y2a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==44)
Spoil_Vector_By_Value(y2a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==45)
Spoil_Vector_By_Deleting_Element(y2a);
//--- function call
v=CAlglib::PearsonCorr2(x2a,y2a,10);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(x3a,10);
//--- initialization
for(int i=0; i<10; i++)
x3a[i]=i*i;
//--- check
if(_spoil_scenario==46)
Spoil_Vector_By_Value(x3a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==47)
Spoil_Vector_By_Value(x3a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==48)
Spoil_Vector_By_Value(x3a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==49)
Spoil_Vector_By_Deleting_Element(x3a);
//--- allocation
ArrayResize(y3a,10);
//--- initialization
for(int i=0; i<10; i++)
y3a[i]=i;
//--- check
if(_spoil_scenario==50)
Spoil_Vector_By_Value(y3a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==51)
Spoil_Vector_By_Value(y3a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==52)
Spoil_Vector_By_Value(y3a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==53)
Spoil_Vector_By_Deleting_Element(y3a);
//--- function call
v=CAlglib::SpearmanCorr2(x3a,y3a,10);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- vector short-form cov/corr are tested.
x4.Resize(5,3);
//--- initialization
x4.Set(0,0,1);
x4.Set(0,1,0);
x4.Set(0,2,1);
x4.Set(1,0,1);
x4.Set(1,1,1);
x4.Set(1,2,0);
x4.Set(2,0,-1);
x4.Set(2,1,1);
x4.Set(2,2,0);
x4.Set(3,0,-2);
x4.Set(3,1,-1);
x4.Set(3,2,1);
x4.Set(4,0,-1);
x4.Set(4,1,0);
x4.Set(4,2,9);
//--- check
if(_spoil_scenario==54)
Spoil_Matrix_By_Value(x4,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==55)
Spoil_Matrix_By_Value(x4,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==56)
Spoil_Matrix_By_Value(x4,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::CovM(x4,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x5.Resize(5,3);
//--- initialization
x5.Set(0,0,1);
x5.Set(0,1,0);
x5.Set(0,2,1);
x5.Set(1,0,1);
x5.Set(1,1,1);
x5.Set(1,2,0);
x5.Set(2,0,-1);
x5.Set(2,1,1);
x5.Set(2,2,0);
x5.Set(3,0,-2);
x5.Set(3,1,-1);
x5.Set(3,2,1);
x5.Set(4,0,-1);
x5.Set(4,1,0);
x5.Set(4,2,9);
//--- check
if(_spoil_scenario==57)
Spoil_Matrix_By_Value(x5,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==58)
Spoil_Matrix_By_Value(x5,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==59)
Spoil_Matrix_By_Value(x5,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::PearsonCorrM(x5,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x6.Resize(5,3);
//--- initialization
x6.Set(0,0,1);
x6.Set(0,1,0);
x6.Set(0,2,1);
x6.Set(1,0,1);
x6.Set(1,1,1);
x6.Set(1,2,0);
x6.Set(2,0,-1);
x6.Set(2,1,1);
x6.Set(2,2,0);
x6.Set(3,0,-2);
x6.Set(3,1,-1);
x6.Set(3,2,1);
x6.Set(4,0,-1);
x6.Set(4,1,0);
x6.Set(4,2,9);
//--- check
if(_spoil_scenario==60)
Spoil_Matrix_By_Value(x6,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==61)
Spoil_Matrix_By_Value(x6,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==62)
Spoil_Matrix_By_Value(x6,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::SpearmanCorrM(x6,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- vector full-form cov/corr are tested.
x7.Resize(5,3);
//--- initialization
x7.Set(0,0,1);
x7.Set(0,1,0);
x7.Set(0,2,1);
x7.Set(1,0,1);
x7.Set(1,1,1);
x7.Set(1,2,0);
x7.Set(2,0,-1);
x7.Set(2,1,1);
x7.Set(2,2,0);
x7.Set(3,0,-2);
x7.Set(3,1,-1);
x7.Set(3,2,1);
x7.Set(4,0,-1);
x7.Set(4,1,0);
x7.Set(4,2,9);
//--- check
if(_spoil_scenario==63)
Spoil_Matrix_By_Value(x7,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==64)
Spoil_Matrix_By_Value(x7,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==65)
Spoil_Matrix_By_Value(x7,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==66)
Spoil_Matrix_By_Deleting_Row(x7);
//--- check
if(_spoil_scenario==67)
Spoil_Matrix_By_Deleting_Col(x7);
//--- function call
CAlglib::CovM(x7,5,3,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x8.Resize(5,3);
//--- initialization
x8.Set(0,0,1);
x8.Set(0,1,0);
x8.Set(0,2,1);
x8.Set(1,0,1);
x8.Set(1,1,1);
x8.Set(1,2,0);
x8.Set(2,0,-1);
x8.Set(2,1,1);
x8.Set(2,2,0);
x8.Set(3,0,-2);
x8.Set(3,1,-1);
x8.Set(3,2,1);
x8.Set(4,0,-1);
x8.Set(4,1,0);
x8.Set(4,2,9);
//--- check
if(_spoil_scenario==68)
Spoil_Matrix_By_Value(x8,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==69)
Spoil_Matrix_By_Value(x8,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==70)
Spoil_Matrix_By_Value(x8,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==71)
Spoil_Matrix_By_Deleting_Row(x8);
//--- check
if(_spoil_scenario==72)
Spoil_Matrix_By_Deleting_Col(x8);
//--- function call
CAlglib::PearsonCorrM(x8,5,3,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x9.Resize(5,3);
//--- initialization
x9.Set(0,0,1);
x9.Set(0,1,0);
x9.Set(0,2,1);
x9.Set(1,0,1);
x9.Set(1,1,1);
x9.Set(1,2,0);
x9.Set(2,0,-1);
x9.Set(2,1,1);
x9.Set(2,2,0);
x9.Set(3,0,-2);
x9.Set(3,1,-1);
x9.Set(3,2,1);
x9.Set(4,0,-1);
x9.Set(4,1,0);
x9.Set(4,2,9);
//--- check
if(_spoil_scenario==73)
Spoil_Matrix_By_Value(x9,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==74)
Spoil_Matrix_By_Value(x9,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==75)
Spoil_Matrix_By_Value(x9,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==76)
Spoil_Matrix_By_Deleting_Row(x9);
//--- check
if(_spoil_scenario==77)
Spoil_Matrix_By_Deleting_Col(x9);
//--- function call
CAlglib::SpearmanCorrM(x9,5,3,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- cross-vector short-form cov/corr are tested.
x10.Resize(5,3);
//--- initialization
x10.Set(0,0,1);
x10.Set(0,1,0);
x10.Set(0,2,1);
x10.Set(1,0,1);
x10.Set(1,1,1);
x10.Set(1,2,0);
x10.Set(2,0,-1);
x10.Set(2,1,1);
x10.Set(2,2,0);
x10.Set(3,0,-2);
x10.Set(3,1,-1);
x10.Set(3,2,1);
x10.Set(4,0,-1);
x10.Set(4,1,0);
x10.Set(4,2,9);
//--- check
if(_spoil_scenario==78)
Spoil_Matrix_By_Value(x10,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==79)
Spoil_Matrix_By_Value(x10,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==80)
Spoil_Matrix_By_Value(x10,CInfOrNaN::NegativeInfinity());
//--- allocation
y10.Resize(5,2);
//--- initialization
y10.Set(0,0,2);
y10.Set(0,1,3);
y10.Set(1,0,2);
y10.Set(1,1,1);
y10.Set(2,0,-1);
y10.Set(2,1,6);
y10.Set(3,0,-9);
y10.Set(3,1,9);
y10.Set(4,0,7);
y10.Set(4,1,1);
//--- check
if(_spoil_scenario==81)
Spoil_Matrix_By_Value(y10,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==82)
Spoil_Matrix_By_Value(y10,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==83)
Spoil_Matrix_By_Value(y10,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::CovM2(x10,y10,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x11.Resize(5,3);
//--- initialization
x11.Set(0,0,1);
x11.Set(0,1,0);
x11.Set(0,2,1);
x11.Set(1,0,1);
x11.Set(1,1,1);
x11.Set(1,2,0);
x11.Set(2,0,-1);
x11.Set(2,1,1);
x11.Set(2,2,0);
x11.Set(3,0,-2);
x11.Set(3,1,-1);
x11.Set(3,2,1);
x11.Set(4,0,-1);
x11.Set(4,1,0);
x11.Set(4,2,9);
//--- check
if(_spoil_scenario==84)
Spoil_Matrix_By_Value(x11,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==85)
Spoil_Matrix_By_Value(x11,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==86)
Spoil_Matrix_By_Value(x11,CInfOrNaN::NegativeInfinity());
//--- allocation
y11.Resize(5,2);
//--- initialization
y11.Set(0,0,2);
y11.Set(0,1,3);
y11.Set(1,0,2);
y11.Set(1,1,1);
y11.Set(2,0,-1);
y11.Set(2,1,6);
y11.Set(3,0,-9);
y11.Set(3,1,9);
y11.Set(4,0,7);
y11.Set(4,1,1);
//--- check
if(_spoil_scenario==87)
Spoil_Matrix_By_Value(y11,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==88)
Spoil_Matrix_By_Value(y11,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==89)
Spoil_Matrix_By_Value(y11,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::PearsonCorrM2(x11,y11,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x12.Resize(5,3);
//--- initialization
x12.Set(0,0,1);
x12.Set(0,1,0);
x12.Set(0,2,1);
x12.Set(1,0,1);
x12.Set(1,1,1);
x12.Set(1,2,0);
x12.Set(2,0,-1);
x12.Set(2,1,1);
x12.Set(2,2,0);
x12.Set(3,0,-2);
x12.Set(3,1,-1);
x12.Set(3,2,1);
x12.Set(4,0,-1);
x12.Set(4,1,0);
x12.Set(4,2,9);
//--- check
if(_spoil_scenario==90)
Spoil_Matrix_By_Value(x12,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==91)
Spoil_Matrix_By_Value(x12,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==92)
Spoil_Matrix_By_Value(x12,CInfOrNaN::NegativeInfinity());
//--- allocation
y12.Resize(5,2);
//--- initialization
y12.Set(0,0,2);
y12.Set(0,1,3);
y12.Set(1,0,2);
y12.Set(1,1,1);
y12.Set(2,0,-1);
y12.Set(2,1,6);
y12.Set(3,0,-9);
y12.Set(3,1,9);
y12.Set(4,0,7);
y12.Set(4,1,1);
//--- check
if(_spoil_scenario==93)
Spoil_Matrix_By_Value(y12,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==94)
Spoil_Matrix_By_Value(y12,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==95)
Spoil_Matrix_By_Value(y12,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::SpearmanCorrM2(x12,y12,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- cross-vector full-form cov/corr are tested.
x13.Resize(5,3);
//--- initialization
x13.Set(0,0,1);
x13.Set(0,1,0);
x13.Set(0,2,1);
x13.Set(1,0,1);
x13.Set(1,1,1);
x13.Set(1,2,0);
x13.Set(2,0,-1);
x13.Set(2,1,1);
x13.Set(2,2,0);
x13.Set(3,0,-2);
x13.Set(3,1,-1);
x13.Set(3,2,1);
x13.Set(4,0,-1);
x13.Set(4,1,0);
x13.Set(4,2,9);
//--- check
if(_spoil_scenario==96)
Spoil_Matrix_By_Value(x13,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==97)
Spoil_Matrix_By_Value(x13,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==98)
Spoil_Matrix_By_Value(x13,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==99)
Spoil_Matrix_By_Deleting_Row(x13);
//--- check
if(_spoil_scenario==100)
Spoil_Matrix_By_Deleting_Col(x13);
//--- allocation
y13.Resize(5,2);
//--- initialization
y13.Set(0,0,2);
y13.Set(0,1,3);
y13.Set(1,0,2);
y13.Set(1,1,1);
y13.Set(2,0,-1);
y13.Set(2,1,6);
y13.Set(3,0,-9);
y13.Set(3,1,9);
y13.Set(4,0,7);
y13.Set(4,1,1);
//--- check
if(_spoil_scenario==101)
Spoil_Matrix_By_Value(y13,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==102)
Spoil_Matrix_By_Value(y13,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==103)
Spoil_Matrix_By_Value(y13,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==104)
Spoil_Matrix_By_Deleting_Row(y13);
//--- check
if(_spoil_scenario==105)
Spoil_Matrix_By_Deleting_Col(y13);
//--- function call
CAlglib::CovM2(x13,y13,5,3,2,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x14.Resize(5,3);
//--- initialization
x14.Set(0,0,1);
x14.Set(0,1,0);
x14.Set(0,2,1);
x14.Set(1,0,1);
x14.Set(1,1,1);
x14.Set(1,2,0);
x14.Set(2,0,-1);
x14.Set(2,1,1);
x14.Set(2,2,0);
x14.Set(3,0,-2);
x14.Set(3,1,-1);
x14.Set(3,2,1);
x14.Set(4,0,-1);
x14.Set(4,1,0);
x14.Set(4,2,9);
//--- check
if(_spoil_scenario==106)
Spoil_Matrix_By_Value(x14,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==107)
Spoil_Matrix_By_Value(x14,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==108)
Spoil_Matrix_By_Value(x14,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==109)
Spoil_Matrix_By_Deleting_Row(x14);
//--- check
if(_spoil_scenario==110)
Spoil_Matrix_By_Deleting_Col(x14);
//--- allocation
y14.Resize(5,2);
//--- initialization
y14.Set(0,0,2);
y14.Set(0,1,3);
y14.Set(1,0,2);
y14.Set(1,1,1);
y14.Set(2,0,-1);
y14.Set(2,1,6);
y14.Set(3,0,-9);
y14.Set(3,1,9);
y14.Set(4,0,7);
y14.Set(4,1,1);
//--- check
if(_spoil_scenario==111)
Spoil_Matrix_By_Value(y14,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==112)
Spoil_Matrix_By_Value(y14,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==113)
Spoil_Matrix_By_Value(y14,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==114)
Spoil_Matrix_By_Deleting_Row(y14);
//--- check
if(_spoil_scenario==115)
Spoil_Matrix_By_Deleting_Col(y14);
//--- function call
CAlglib::PearsonCorrM2(x14,y14,5,3,2,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
x15.Resize(5,3);
//--- initialization
x15.Set(0,0,1);
x15.Set(0,1,0);
x15.Set(0,2,1);
x15.Set(1,0,1);
x15.Set(1,1,1);
x15.Set(1,2,0);
x15.Set(2,0,-1);
x15.Set(2,1,1);
x15.Set(2,2,0);
x15.Set(3,0,-2);
x15.Set(3,1,-1);
x15.Set(3,2,1);
x15.Set(4,0,-1);
x15.Set(4,1,0);
x15.Set(4,2,9);
//--- check
if(_spoil_scenario==116)
Spoil_Matrix_By_Value(x15,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==117)
Spoil_Matrix_By_Value(x15,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==118)
Spoil_Matrix_By_Value(x15,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==119)
Spoil_Matrix_By_Deleting_Row(x15);
//--- check
if(_spoil_scenario==120)
Spoil_Matrix_By_Deleting_Col(x15);
//--- allocation
y15.Resize(5,2);
//--- initialization
y15.Set(0,0,2);
y15.Set(0,1,3);
y15.Set(1,0,2);
y15.Set(1,1,1);
y15.Set(2,0,-1);
y15.Set(2,1,6);
y15.Set(3,0,-9);
y15.Set(3,1,9);
y15.Set(4,0,7);
y15.Set(4,1,1);
//--- check
if(_spoil_scenario==121)
Spoil_Matrix_By_Value(y15,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==122)
Spoil_Matrix_By_Value(y15,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==123)
Spoil_Matrix_By_Value(y15,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==124)
Spoil_Matrix_By_Deleting_Row(y15);
//--- check
if(_spoil_scenario==125)
Spoil_Matrix_By_Deleting_Col(y15);
//--- function call
CAlglib::SpearmanCorrM2(x15,y15,5,3,2,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Real matrix inverse |
//+------------------------------------------------------------------+
void TEST_MatInv_D_R1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,1);
a.Set(0,1,-1);
a.Set(1,0,1);
a.Set(1,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(a);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(a);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::RMatrixInverse(a,info,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,0.5);
tempmatrix.Set(0,1,0.5);
tempmatrix.Set(1,0,-0.5);
tempmatrix.Set(1,1,0.5);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Matrix(a,tempmatrix,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetR1(),0.5,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetRInf(),0.5,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Complex matrix inverse |
//+------------------------------------------------------------------+
void TEST_MatInv_D_C1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixComplex a;
CMatrixComplex tempmatrix;
complex tempcomplex1;
complex tempcomplex2;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=1;
tempcomplex2.real=0;
tempcomplex2.imag=-0.5;
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,tempcomplex1);
a.Set(0,1,-1);
a.Set(1,0,tempcomplex1);
a.Set(1,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(a);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(a);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::CMatrixInverse(a,info,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,tempcomplex2);
tempmatrix.Set(0,1,tempcomplex2);
tempmatrix.Set(1,0,-0.5);
tempmatrix.Set(1,1,0.5);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Complex_Matrix(a,tempmatrix,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetR1(),0.5,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetRInf(),0.5,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| SPD matrix inverse |
//+------------------------------------------------------------------+
void TEST_MatInv_D_SPD1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
CMatrixDouble tempmatrix;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,2);
a.Set(0,1,1);
a.Set(1,0,1);
a.Set(1,1,2);
//--- check
do
{
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
}
while(_spoil_scenario>=0 && _spoil_scenario<=2 && CApServ::IsFiniteRTrMatrix(a,2,false));
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(a);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(a);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::SPDMatrixInverse(a,info,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,0.666666);
tempmatrix.Set(0,1,-0.333333);
tempmatrix.Set(1,0,-0.333333);
tempmatrix.Set(1,1,0.666666);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Matrix(a,tempmatrix,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| HPD matrix inverse |
//+------------------------------------------------------------------+
void TEST_MatInv_D_HPD1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixComplex a;
CMatrixComplex tempmatrix;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,2);
a.Set(0,1,1);
a.Set(1,0,1);
a.Set(1,1,2);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(a);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(a);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::HPDMatrixInverse(a,info,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,0.666666);
tempmatrix.Set(0,1,-0.333333);
tempmatrix.Set(1,0,-0.333333);
tempmatrix.Set(1,1,0.666666);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Complex_Matrix(a,tempmatrix,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Real matrix inverse: singular matrix |
//+------------------------------------------------------------------+
void TEST_MatInv_T_R1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,1);
a.Set(0,1,-1);
a.Set(1,0,-2);
a.Set(1,1,2);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::RMatrixInverse(a,info,rep);
//--- handling exceptions
Func_spoil_scenario(_spoil_scenario,_TestResult);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,-3);
_TestResult=_TestResult && Doc_Test_Real(rep.GetR1(),0.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetRInf(),0.0,0.00005);
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Complex matrix inverse: singular matrix |
//+------------------------------------------------------------------+
void TEST_MatInv_T_C1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixComplex a;
complex tempcomplex1;
complex tempcomplex2;
tempcomplex1.real=0;
tempcomplex1.imag=1;
tempcomplex2.real=0;
tempcomplex2.imag=-1;
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,tempcomplex1);
a.Set(0,1,tempcomplex2);
a.Set(1,0,-2);
a.Set(1,1,2);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::CMatrixInverse(a,info,rep);
//--- handling exceptions
Func_spoil_scenario(_spoil_scenario,_TestResult);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,-3);
_TestResult=_TestResult && Doc_Test_Real(rep.GetR1(),0.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(rep.GetRInf(),0.0,0.00005);
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Attempt to use SPD function on nonsymmetrix matrix |
//+------------------------------------------------------------------+
void TEST_MatInv_E_SPD1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,1);
a.Set(0,1,0);
a.Set(1,0,1);
a.Set(1,1,1);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::SPDMatrixInverse(a,info,rep);
//--- handling exceptions
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
_TestResult=false;
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Attempt to use SPD function on nonsymmetrix matrix |
//+------------------------------------------------------------------+
void TEST_MatInv_E_HPD1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixComplex a;
//--- allocation
a.Resize(2,2);
//--- initialization
a.Set(0,0,1);
a.Set(0,1,0);
a.Set(1,0,1);
a.Set(1,1,1);
//--- create variables
int info;
CMatInvReportShell rep;
//--- function call
CAlglib::HPDMatrixInverse(a,info,rep);
//--- handling exceptions
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
_TestResult=false;
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by CG |
//+------------------------------------------------------------------+
void TEST_MinCG_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- with nonlinear conjugate gradient method.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- create a variable
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
//--- create a variable
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
//--- create a variable
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
int maxits=0;
//--- create variables
CMinCGStateShell state;
CMinCGReportShell rep;
//--- function call
CAlglib::MinCGCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with additional settings and restarts |
//+------------------------------------------------------------------+
void TEST_MinCG_D_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<18; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- with nonlinear conjugate gradient method.
//--- Several advanced techniques are demonstrated:
//--- * upper limit on step size
//--- * restart from new point
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
double stpmax=0.1;
//--- check
if(_spoil_scenario==12)
stpmax=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
stpmax=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
stpmax=CInfOrNaN::NegativeInfinity();
int maxits=0;
//--- create variables
CMinCGStateShell state;
CMinCGReportShell rep;
//--- first run
CAlglib::MinCGCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGSetStpMax(state,stpmax);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
//--- second run - algorithm is restarted with mincgrestartfrom()
ArrayResize(x,2);
//--- initialization
x[0]=10;
x[1]=10;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MinCGRestartFrom(state,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by CG with numerical differentiation |
//+------------------------------------------------------------------+
void TEST_MinCG_NumDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<15; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- using numerical differentiation to calculate gradient.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
double diffstep=1.0e-6;
//--- check
if(_spoil_scenario==12)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
diffstep=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinCGStateShell state;
CMinCGReportShell rep;
//--- function call
CAlglib::MinCGCreateF(x,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGOptimize(state,ffunc,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by CG, function with singularities |
//+------------------------------------------------------------------+
void TEST_MinCG_FTRIM(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_S1_Grad fs1grad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x)=(1+x)^(-0.2) + (1-x)^(-0.3) + 1000*x.
//--- This function has singularities at the boundary of the [-1,+1],but technique called
//--- "function trimming" allows us to solve this optimization problem.
//--- See http://www.CAlglib::net/optimization/tipsandtricks.php#ftrimming for more information
//--- on this subject.
ArrayResize(x,1);
//--- initialization
x[0]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=1.0e-6;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinCGStateShell state;
CMinCGReportShell rep;
//--- function call
CAlglib::MinCGCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGOptimize(state,fs1grad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinCGResults(state,x,rep);
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=-0.99917305;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.000005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with bound constraints |
//+------------------------------------------------------------------+
void TEST_MinBLEIC_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
double bndl[];
double bndu[];
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<22; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- subject to bound constraints -1<=x<=+1,-1<=y<=+1,using BLEIC optimizer.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(bndl,2);
//--- initialization
bndl[0]=-1;
bndl[1]=-1;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,2);
//--- initialization
bndu[0]=1;
bndu[1]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(bndu);
CMinBLEICStateShell state;
CMinBLEICReportShell rep;
//--- These variables define stopping conditions for the underlying CG algorithm.
//--- They should be stringent enough in order to guarantee overall stability
//--- of the outer iterations.
//--- We use very simple condition - |g|<=epsg
double epsg=0.000001;
//--- check
if(_spoil_scenario==7)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==8)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==10)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==11)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==12)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- These variables define stopping conditions for the outer iterations:
//--- * epso controls convergence of outer iterations;algorithm will stop
//--- when difference between solutions of subsequent unconstrained problems
//--- will be less than 0.0001
//--- * epsi controls amount of infeasibility allowed in the final solution
double epso=0.00001;
//--- check
if(_spoil_scenario==16)
epso=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==17)
epso=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==18)
epso=CInfOrNaN::NegativeInfinity();
double epsi=0.00001;
//--- check
if(_spoil_scenario==19)
epsi=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==20)
epsi=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==21)
epsi=CInfOrNaN::NegativeInfinity();
//--- Now we are ready to actually optimize something:
//--- * first we create optimizer
//--- * we add boundary constraints
//--- * we tune stopping conditions
//--- * and,finally,optimize and obtain results...
CAlglib::MinBLEICCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetInnerCond(state,epsg,epsf,epsx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetOuterCond(state,epso,epsi);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- ...and evaluate these results
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-1;
temparray[1]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with linear inequality constraints |
//+------------------------------------------------------------------+
void TEST_MinBLEIC_D_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
int ct[];
CMatrixDouble c;
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<24; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- subject to inequality constraints:
//--- * x>=2 (posed as general linear constraint),
//--- * x+y>=6
//--- using BLEIC optimizer.
ArrayResize(x,2);
//--- initialization
x[0]=5;
x[1]=5;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- allocation
c.Resize(2,3);
//--- initialization
c.Set(0,0,1);
c.Set(0,1,0);
c.Set(0,2,2);
c.Set(1,0,1);
c.Set(1,1,1);
c.Set(1,2,6);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(c,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Row(c);
//--- check
if(_spoil_scenario==7)
Spoil_Matrix_By_Deleting_Col(c);
//--- allocation
ArrayResize(ct,2);
//--- initialization
ct[0]=1;
ct[1]=1;
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(ct);
//--- create variables
CMinBLEICStateShell state;
CMinBLEICReportShell rep;
//--- These variables define stopping conditions for the underlying CG algorithm.
//--- They should be stringent enough in order to guarantee overall stability
//--- of the outer iterations.
//--- We use very simple condition - |g|<=epsg
double epsg=0.000001;
//--- check
if(_spoil_scenario==9)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==12)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==16)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==17)
epsx=CInfOrNaN::NegativeInfinity();
//--- These variables define stopping conditions for the outer iterations:
//--- * epso controls convergence of outer iterations;algorithm will stop
//--- when difference between solutions of subsequent unconstrained problems
//--- will be less than 0.0001
//--- * epsi controls amount of infeasibility allowed in the final solution
double epso=0.00001;
//--- check
if(_spoil_scenario==18)
epso=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==19)
epso=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==20)
epso=CInfOrNaN::NegativeInfinity();
double epsi=0.00001;
//--- check
if(_spoil_scenario==21)
epsi=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==22)
epsi=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==23)
epsi=CInfOrNaN::NegativeInfinity();
//--- Now we are ready to actually optimize something:
//--- * first we create optimizer
//--- * we add linear constraints
//--- * we tune stopping conditions
//--- * and,finally,optimize and obtain results...
CAlglib::MinBLEICCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetLC(state,c,ct);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetInnerCond(state,epsg,epsf,epsx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetOuterCond(state,epso,epsi);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- ...and evaluate these results
ArrayResize(temparray,2);
//--- initialization
temparray[0]=2;
temparray[1]=4;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with bound constraints and numerical |
//| differentiation |
//+------------------------------------------------------------------+
void TEST_MinBLEIC_NumDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
double bndl[];
double bndu[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<25; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- subject to bound constraints -1<=x<=+1,-1<=y<=+1,using BLEIC optimizer.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(bndl,2);
//--- initialization
bndl[0]=-1;
bndl[1]=-1;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,2);
//--- initialization
bndu[0]=1;
bndu[1]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(bndu);
CMinBLEICStateShell state;
CMinBLEICReportShell rep;
//--- These variables define stopping conditions for the underlying CG algorithm.
//--- They should be stringent enough in order to guarantee overall stability
//--- of the outer iterations.
//--- We use very simple condition - |g|<=epsg
double epsg=0.000001;
//--- check
if(_spoil_scenario==7)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==8)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==10)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==11)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==12)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- These variables define stopping conditions for the outer iterations:
//--- * epso controls convergence of outer iterations;algorithm will stop
//--- when difference between solutions of subsequent unconstrained problems
//--- will be less than 0.0001
//--- * epsi controls amount of infeasibility allowed in the final solution
double epso=0.00001;
//--- check
if(_spoil_scenario==16)
epso=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==17)
epso=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==18)
epso=CInfOrNaN::NegativeInfinity();
double epsi=0.00001;
//--- check
if(_spoil_scenario==19)
epsi=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==20)
epsi=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==21)
epsi=CInfOrNaN::NegativeInfinity();
//--- This variable contains differentiation step
double diffstep=1.0e-6;
//--- check
if(_spoil_scenario==22)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==23)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==24)
diffstep=CInfOrNaN::NegativeInfinity();
//--- Now we are ready to actually optimize something:
//--- * first we create optimizer
//--- * we add boundary constraints
//--- * we tune stopping conditions
//--- * and,finally,optimize and obtain results...
CAlglib::MinBLEICCreateF(x,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetInnerCond(state,epsg,epsf,epsx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetOuterCond(state,epso,epsi);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICOptimize(state,ffunc,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- ...and evaluate these results
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-1;
temparray[1]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by BLEIC, function with singularities |
//+------------------------------------------------------------------+
void TEST_MinBLEIC_FTRIM(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_S1_Grad fs1grad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<18; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x)=(1+x)^(-0.2) + (1-x)^(-0.3) + 1000*x.
//--- This function is undefined outside of (-1,+1) and has singularities at x=-1 and x=+1.
//--- Special technique called "function trimming" allows us to solve this optimization problem
//--- - withusing boundary constraints!
//--- See http://www.CAlglib::net/optimization/tipsandtricks.php#ftrimming for more information
//--- on this subject.
ArrayResize(x,1);
//--- initialization
x[0]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=1.0e-6;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
double epso=1.0e-6;
//--- check
if(_spoil_scenario==12)
epso=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
epso=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
epso=CInfOrNaN::NegativeInfinity();
double epsi=1.0e-6;
//--- check
if(_spoil_scenario==15)
epsi=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==16)
epsi=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==17)
epsi=CInfOrNaN::NegativeInfinity();
//--- create variables
CMinBLEICStateShell state;
CMinBLEICReportShell rep;
//--- function call
CAlglib::MinBLEICCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetInnerCond(state,epsg,epsf,epsx);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICSetOuterCond(state,epso,epsi);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICOptimize(state,fs1grad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinBLEICResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=-0.99917305;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.000005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple unconstrained MCPD model (no entry/exit states) |
//+------------------------------------------------------------------+
void TEST_MCPD_Simple1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble track0;
CMatrixDouble track1;
CMatrixDouble tempmatrix;
CMatrixDouble p;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- The very simple MCPD example
//--- We have a loan portfolio. Our loans can be in one of two states:
//---*normal loans ("good" ones)
//---*past due loans ("bad" ones)
//--- We assume that:
//--- * loans can transition from any state to any other state. In
//--- particular,past due loan can become "good" one at any moment
//--- with same (fixed) probability. Not realistic,but it is toy example :)
//--- * portfolio size does not change over time
//
//--- Thus,we have following model
//--- state_new=P*state_old
//--- where
//--- ( p00 p01 )
//--- P = ( )
//--- ( p10 p11 )
//--- We want to model transitions between these two states using MCPD
//--- approach (Markov Chains for Proportional/Population Data),i.e.
//--- to restore hidden transition matrix P using actual portfolio data.
//--- We have:
//--- * poportional data,i.e. proportion of loans in the normal and past
//--- due states (not portfolio size measured in some currency,although
//--- it is possible to work with population data too)
//--- * two tracks,i.e. two sequences which describe portfolio
//--- evolution from two different starting states: [1,0] (all loans
//--- are "good") and [0.8,0.2] (only 80% of portfolio is in the "good"
//--- state)
CMCPDStateShell s;
CMCPDReportShell rep;
//--- allocation
track0.Resize(5,2);
//--- initialization
track0.Set(0,0,1);
track0.Set(0,1,0);
track0.Set(1,0,0.95);
track0.Set(1,1,0.05);
track0.Set(2,0,0.9275);
track0.Set(2,1,0.0725);
track0.Set(3,0,0.91738);
track0.Set(3,1,0.08263);
track0.Set(4,0,0.91282);
track0.Set(4,1,0.08718);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(track0,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(track0,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(track0,CInfOrNaN::NegativeInfinity());
//--- allocation
track1.Resize(4,2);
//--- initialization
track1.Set(0,0,0.8);
track1.Set(0,1,0.2);
track1.Set(1,0,0.86);
track1.Set(1,1,0.14);
track1.Set(2,0,0.887);
track1.Set(2,1,0.113);
track1.Set(3,0,0.89915);
track1.Set(3,1,0.10085);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Value(track1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Value(track1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(track1,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MCPDCreate(2,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddTrack(s,track0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddTrack(s,track1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDSolve(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDResults(s,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Hidden matrix P is equal to
//--- ( 0.95 0.50 )
//--- ( )
//--- ( 0.05 0.50 )
//--- which means that "good" loans can become "bad" with 5% probability,
//--- while "bad" loans will return to good state with 50% probability.
tempmatrix.Resize(2,2);
//--- initialization
tempmatrix.Set(0,0,0.95);
tempmatrix.Set(0,1,0.5);
tempmatrix.Set(1,0,0.05);
tempmatrix.Set(1,1,0.5);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(p,tempmatrix,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple MCPD model (no entry/exit states) with equality |
//| constraints |
//+------------------------------------------------------------------+
void TEST_MCPD_Simple2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble track0;
CMatrixDouble track1;
CMatrixDouble tempmatrix;
CMatrixDouble p;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- Simple MCPD example
//--- We have a loan portfolio. Our loans can be in one of three states:
//--- * normal loans
//--- * past due loans
//--- * charged off loans
//--- We assume that:
//--- * normal loan can stay normal or become past due (but not charged off)
//--- * past due loan can stay past due,become normal or charged off
//--- * charged off loan will stay charged off for the rest of eternity
//--- * portfolio size does not change over time
//--- Not realistic,but it is toy example :)
//--- Thus,we have following model
//--- state_new=P*state_old
//--- where
//--- ( p00 p01 )
//--- P = ( p10 p11 )
//--- ( p21 1 )
//--- i.e. four elements of P are known a priori.
//--- Although it is possible (given enough data) to In order to enforce
//--- this property we set equality constraints on these elements.
//--- We want to model transitions between these two states using MCPD
//--- approach (Markov Chains for Proportional/Population Data),i.e.
//--- to restore hidden transition matrix P using actual portfolio data.
//--- We have:
//--- * poportional data,i.e. proportion of loans in the current and past
//--- due states (not portfolio size measured in some currency,although
//--- it is possible to work with population data too)
//--- * two tracks,i.e. two sequences which describe portfolio
//--- evolution from two different starting states: [1,0,0] (all loans
//--- are "good") and [0.8,0.2,0.0] (only 80% of portfolio is in the "good"
//--- state)
CMCPDStateShell s;
CMCPDReportShell rep;
//--- allocation
track0.Resize(5,3);
//--- initialization
track0.Set(0,0,1);
track0.Set(0,1,0);
track0.Set(0,2,0);
track0.Set(1,0,0.95);
track0.Set(1,1,0.05);
track0.Set(1,2,0);
track0.Set(2,0,0.9275);
track0.Set(2,1,0.06);
track0.Set(2,2,0.0125);
track0.Set(3,0,0.911125);
track0.Set(3,1,0.061375);
track0.Set(3,2,0.0275);
track0.Set(4,0,0.896256);
track0.Set(4,1,0.0609);
track0.Set(4,2,0.042844);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(track0,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(track0,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(track0,CInfOrNaN::NegativeInfinity());
//--- allocation
track1.Resize(5,3);
//--- initialization
track1.Set(0,0,0.8);
track1.Set(0,1,0.2);
track1.Set(0,2,0);
track1.Set(1,0,0.86);
track1.Set(1,1,0.09);
track1.Set(1,2,0.05);
track1.Set(2,0,0.862);
track1.Set(2,1,0.0655);
track1.Set(2,2,0.0725);
track1.Set(3,0,0.85165);
track1.Set(3,1,0.059475);
track1.Set(3,2,0.088875);
track1.Set(4,0,0.838805);
track1.Set(4,1,0.057451);
track1.Set(4,2,0.103744);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Value(track1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Value(track1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(track1,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MCPDCreate(3,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddTrack(s,track0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddTrack(s,track1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddEC(s,0,2,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddEC(s,1,2,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddEC(s,2,2,1.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDAddEC(s,2,0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDSolve(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MCPDResults(s,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Hidden matrix P is equal to
//--- ( 0.95 0.50 )
//--- ( 0.05 0.25 )
//--- ( 0.25 1.00 )
//--- which means that "good" loans can become past due with 5% probability,
//--- while past due loans will become charged off with 25% probability or
//--- return back to normal state with 50% probability.
tempmatrix.Resize(3,3);
//--- initialization
tempmatrix.Set(0,0,0.95);
tempmatrix.Set(0,1,0.5);
tempmatrix.Set(0,2,0);
tempmatrix.Set(1,0,0.05);
tempmatrix.Set(1,1,0.25);
tempmatrix.Set(1,2,0);
tempmatrix.Set(2,0,0);
tempmatrix.Set(2,1,0.25);
tempmatrix.Set(2,2,1);
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Matrix(p,tempmatrix,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by L-BFGS |
//+------------------------------------------------------------------+
void TEST_MinLBFGS_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- using LBFGS method.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLBFGSStateShell state;
CMinLBFGSReportShell rep;
//--- function call
CAlglib::MinLBFGSCreate(1,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with additional settings and restarts |
//+------------------------------------------------------------------+
void TEST_MinLBFGS_D_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Grad1 fgrad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<18; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- using LBFGS method.
//--- Several advanced techniques are demonstrated:
//--- * upper limit on step size
//--- * restart from new point
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
double stpmax=0.1;
//--- check
if(_spoil_scenario==12)
stpmax=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
stpmax=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
stpmax=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLBFGSStateShell state;
CMinLBFGSReportShell rep;
//--- first run
CAlglib::MinLBFGSCreate(1,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSSetStpMax(state,stpmax);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
//--- second run - algorithm is restarted
ArrayResize(x,2);
//--- initialization
x[0]=10;
x[1]=10;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MinLBFGSRestartFrom(state,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSOptimize(state,fgrad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by L-BFGS with numerical differentiation |
//+------------------------------------------------------------------+
void TEST_MinLBFGS_NumDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<15; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x,y)=100*(x+3)^4+(y-3)^4
//--- using numerical differentiation to calculate gradient.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
double diffstep=1.0e-6;
//--- check
if(_spoil_scenario==12)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==13)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==14)
diffstep=CInfOrNaN::NegativeInfinity();
int maxits=0;
CMinLBFGSStateShell state;
CMinLBFGSReportShell rep;
//--- function call
CAlglib::MinLBFGSCreateF(1,x,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSOptimize(state,ffunc,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization by LBFGS, function with singularities |
//+------------------------------------------------------------------+
void TEST_MinLBFGS_FTRIM(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
CObject obj;
CNDimensional_S1_Grad fs1grad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- This example demonstrates minimization of f(x)=(1+x)^(-0.2) + (1-x)^(-0.3) + 1000*x.
//--- This function has singularities at the boundary of the [-1,+1],but technique called
//--- "function trimming" allows us to solve this optimization problem.
//--- See http://www.CAlglib::net/optimization/tipsandtricks.php#ftrimming for more information
//--- on this subject.
ArrayResize(x,1);
//--- initialization
x[0]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=1.0e-6;
//--- check
if(_spoil_scenario==3)
epsg=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsg=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsg=CInfOrNaN::NegativeInfinity();
double epsf=0;
//--- check
if(_spoil_scenario==6)
epsf=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsf=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsf=CInfOrNaN::NegativeInfinity();
double epsx=0;
//--- check
if(_spoil_scenario==9)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLBFGSStateShell state;
CMinLBFGSReportShell rep;
//--- function call
CAlglib::MinLBFGSCreate(1,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSOptimize(state,fs1grad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLBFGSResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=-0.99917305;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.000005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Solving y'=-y with ODE solver |
//+------------------------------------------------------------------+
void TEST_ODESolver_D1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double x[];
int m;
double xtbl[];
double temparray[];
CMatrixDouble ytbl;
CMatrixDouble tempmatrix;
CObject obj;
CNDimensional_ODE_Function_1_Dif fode;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<13; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,1);
//--- initialization
y[0]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(x,4);
//--- initialization
x[0]=0;
x[1]=1;
x[2]=2;
x[3]=3;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double eps=0.00001;
//--- check
if(_spoil_scenario==7)
eps=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==8)
eps=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
eps=CInfOrNaN::NegativeInfinity();
double h=0;
//--- check
if(_spoil_scenario==10)
h=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==11)
h=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==12)
h=CInfOrNaN::NegativeInfinity();
//--- create variables
CODESolverStateShell s;
CODESolverReportShell rep;
//--- function call
CAlglib::ODESolverRKCK(y,x,eps,h,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::ODESolverSolve(s,fode,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::ODESolverResults(s,m,xtbl,ytbl,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=0;
temparray[1]=1;
temparray[2]=2;
temparray[3]=3;
//--- allocation
tempmatrix.Resize(4,1);
//--- initialization
tempmatrix.Set(0,0,1);
tempmatrix.Set(1,0,0.367);
tempmatrix.Set(2,0,0.135);
tempmatrix.Set(3,0,0.05);
//--- check result
_TestResult=_TestResult && Doc_Test_Int(m,4);
_TestResult=_TestResult && Doc_Test_Real_Vector(xtbl,temparray,0.005);
_TestResult=_TestResult && Doc_Test_Real_Matrix(ytbl,tempmatrix,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Complex FFT: simple example |
//+------------------------------------------------------------------+
void TEST_FFT_Complex_D1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex z[];
complex temparray[];
complex tempcomplex1;
complex tempcomplex2;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- first we demonstrate forward FFT:
//--- [1i,1i,1i,1i] is converted to [4i,0,0,0]
tempcomplex1.real=0;
tempcomplex1.imag=1;
tempcomplex2.real=0;
tempcomplex2.imag=4;
//--- allocation
ArrayResize(z,4);
//--- initialization
z[0]=tempcomplex1;
z[1]=tempcomplex1;
z[2]=tempcomplex1;
z[3]=tempcomplex1;
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(z,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(z,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(z,cnegativeinfinity);
//--- function call
CAlglib::FFTC1D(z);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=tempcomplex2;
temparray[1]=0;
temparray[2]=0;
temparray[3]=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(z,temparray,0.0001);
//--- now we convert [4i,0,0,0] back to [1i,1i,1i,1i]
//--- with backward FFT
CAlglib::FFTC1DInv(z);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=tempcomplex1;
temparray[1]=tempcomplex1;
temparray[2]=tempcomplex1;
temparray[3]=tempcomplex1;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(z,temparray,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Complex FFT: advanced example |
//+------------------------------------------------------------------+
void TEST_FFT_Complex_D2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex z[];
complex temparray[];
complex tempcomplex1;
complex tempcomplex2;
complex tempcomplex3;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- first we demonstrate forward FFT:
//--- [0,1,0,1i] is converted to [1+1i,-1-1i,-1-1i,1+1i]
tempcomplex1.real=0;
tempcomplex1.imag=1;
//--- allocation
ArrayResize(z,4);
//--- initialization
z[0]=0;
z[1]=1;
z[2]=0;
z[3]=tempcomplex1;
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(z,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(z,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(z,cnegativeinfinity);
//--- function call
CAlglib::FFTC1D(z);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex2.real=1;
tempcomplex2.imag=1;
tempcomplex3.real=-1;
tempcomplex3.imag=-1;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=tempcomplex2;
temparray[1]=tempcomplex3;
temparray[2]=tempcomplex3;
temparray[3]=tempcomplex2;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(z,temparray,0.0001);
//--- now we convert result back with backward FFT
CAlglib::FFTC1DInv(z);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=0;
temparray[1]=1;
temparray[2]=0;
temparray[3]=tempcomplex1;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(z,temparray,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Real FFT: simple example |
//+------------------------------------------------------------------+
void TEST_FFT_Real_D1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
complex tempcarray[];
double temparray[];
complex f[];
double x2[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- first we demonstrate forward FFT:
//--- [1,1,1,1] is converted to [4,0,0,0]
ArrayResize(x,4);
//--- initialization
x[0]=1;
x[1]=1;
x[2]=1;
x[3]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::FFTR1D(x,f);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(tempcarray,4);
//--- initialization
tempcarray[0]=4;
tempcarray[1]=0;
tempcarray[2]=0;
tempcarray[3]=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(f,tempcarray,0.0001);
//--- now we convert [4,0,0,0] back to [1,1,1,1]
//--- with backward FFT
CAlglib::FFTR1DInv(f,x2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=1;
temparray[1]=1;
temparray[2]=1;
temparray[3]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x2,temparray,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Real FFT: advanced example |
//+------------------------------------------------------------------+
void TEST_FFT_Real_D2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double temparray[];
complex tempcarray[];
complex f[];
double x2[];
complex tempcomplex1;
complex tempcomplex2;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- first we demonstrate forward FFT:
//--- [1,2,3,4] is converted to [10,-2+2i,-2,-2-2i]
//--- note that output array is self-adjoint:
//--- * f[0]=conj(f[0])
//--- * f[1]=conj(f[3])
//--- * f[2]=conj(f[2])
ArrayResize(x,4);
//--- initialization
x[0]=1;
x[1]=2;
x[2]=3;
x[3]=4;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::FFTR1D(x,f);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex1.real=-2;
tempcomplex1.imag=2;
tempcomplex2.real=-2;
tempcomplex2.imag=-2;
//--- allocation
ArrayResize(tempcarray,4);
//--- initialization
tempcarray[0]=10;
tempcarray[1]=tempcomplex1;
tempcarray[2]=-2;
tempcarray[3]=tempcomplex2;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(f,tempcarray,0.0001);
//--- now we convert [10,-2+2i,-2,-2-2i] back to [1,2,3,4]
CAlglib::FFTR1DInv(f,x2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=1;
temparray[1]=2;
temparray[2]=3;
temparray[3]=4;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x2,temparray,0.0001);
//--- remember that F is self-adjoint? It means that we can pass just half
//--- (slightly larger than half) of F to inverse real FFT and still get our result.
//--- I.e. instead [10,-2+2i,-2,-2-2i] we pass just [10,-2+2i,-2] and everything works!
//--- NOTE: in this case we should explicitly pass array length (which is 4) to ALGLIB;
//--- if not,it will automatically use array length to determine FFT size and
//--- will erroneously make half-length FFT.
ArrayResize(f,3);
//--- initialization
f[0]=10;
f[1]=tempcomplex1;
f[2]=-2;
//--- function call
CAlglib::FFTR1DInv(f,4,x2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=1;
temparray[1]=2;
temparray[2]=3;
temparray[3]=4;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x2,temparray,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| error detection in backward FFT |
//+------------------------------------------------------------------+
void TEST_FFT_Complex_E1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex tempcomplex1;
complex tempcomplex2;
complex z[];
complex temparray[];
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- allocation
ArrayResize(z,4);
//--- initialization
z[0]=0;
z[1]=2;
z[2]=0;
z[3]=-2;
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(z,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(z,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(z,cnegativeinfinity);
//--- function call
CAlglib::FFTC1DInv(z);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=1;
tempcomplex2.real=0;
tempcomplex2.imag=-1;
//--- allocation
ArrayResize(temparray,4);
//--- initialization
temparray[0]=0;
temparray[1]=tempcomplex1;
temparray[2]=0;
temparray[3]=tempcomplex2;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex_Vector(z,temparray,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Integrating f=exp(x) by adaptive integrator |
//+------------------------------------------------------------------+
void TEST_AutoGK_D1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CObject obj;
CInt_Function_1_Func fint;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- This example demonstrates integration of f=exp(x) on [0,1]:
//--- * first,autogkstate is initialized
//--- * then we call integration function
//--- * and finally we obtain results with autogkresults() call
double a=0;
//--- check
if(_spoil_scenario==0)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==1)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==2)
a=CInfOrNaN::NegativeInfinity();
double b=1;
//--- check
if(_spoil_scenario==3)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
b=CInfOrNaN::NegativeInfinity();
//--- create variables
CAutoGKStateShell s;
double v;
CAutoGKReportShell rep;
//--- function call
CAlglib::AutoGKSmooth(a,b,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::AutoGKIntegrate(s,fint,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::AutoGKResults(s,v,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,1.7182,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Interpolation and differentiation using barycentric |
//| representation |
//+------------------------------------------------------------------+
void TEST_PolInt_D_CalcDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- Here we demonstrate polynomial interpolation and differentiation
//--- of y=x^2-x sampled at [0,1,2]. Barycentric representation of polynomial is used.
ArrayResize(x,3);
//--- initialization
x[0]=0;
x[1]=1;
x[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
double t=-1;
//--- check
if(_spoil_scenario==10)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
double v;
double dv;
double d2v;
CBarycentricInterpolantShell p;
//--- barycentric model is created
CAlglib::PolynomialBuild(x,y,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- barycentric interpolation is demonstrated
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
//--- barycentric differentation is demonstrated
CAlglib::BarycentricDiff1(p,t,v,dv);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(dv,-3.0,0.00005);
//--- second derivatives with barycentric representation
CAlglib::BarycentricDiff1(p,t,v,dv);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(dv,-3.0,0.00005);
//--- function call
CAlglib::BarycentricDiff2(p,t,v,dv,d2v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(dv,-3.0,0.00005);
_TestResult=_TestResult && Doc_Test_Real(d2v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Conversion between power basis and barycentric representation |
//+------------------------------------------------------------------+
void TEST_PolInt_D_Conv(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a[];
double temparray[];
double a2[];
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- Here we demonstrate conversion of y=x^2-x
//--- between power basis and barycentric representation.
ArrayResize(a,3);
//--- initialization
a[0]=0;
a[1]=-1;
a[2]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(a,CInfOrNaN::NegativeInfinity());
double t=2;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
//--- create a variable
CBarycentricInterpolantShell p;
//--- a=[0,-1,+1] is decomposition of y=x^2-x in the power basis:
//--- y=0 - 1*x + 1*x^2
//--- We convert it to the barycentric form.
CAlglib::PolynomialPow2Bar(a,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- now we have barycentric interpolation;we can use it for interpolation
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.005);
//--- we can also convert back from barycentric representation to power basis
CAlglib::PolynomialBar2Pow(p,a2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,3);
//--- initialization
temparray[0]=0;
temparray[1]=-1;
temparray[2]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(a2,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation on special grids (equidistant, |
//| Chebyshev I/II) |
//+------------------------------------------------------------------+
void TEST_PolInt_D_Spec(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y_eqdist[];
double y_cheb1[];
double y_cheb2[];
double a_eqdist[];
double a_cheb1[];
double a_cheb2[];
double temparray[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- Temporaries:
//--- * values of y=x^2-x sampled at three special grids:
//--- * equdistant grid spanning [0,2], x[i]=2*i/(N-1),i=0..N-1
//--- * Chebyshev-I grid spanning [-1,+1],x[i]=1 + Cos(PI*(2*i+1)/(2*n)),i=0..N-1
//--- * Chebyshev-II grid spanning [-1,+1],x[i]=1 + Cos(PI*i/(n-1)),i=0..N-1
//--- * barycentric interpolants for these three grids
//--- * vectors to store coefficients of quadratic representation
ArrayResize(y_eqdist,3);
//--- initialization
y_eqdist[0]=0;
y_eqdist[1]=0;
y_eqdist[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y_eqdist,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y_eqdist,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y_eqdist,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(y_cheb1,3);
//--- initialization
y_cheb1[0]=-0.116025;
y_cheb1[1]=0;
y_cheb1[2]=1.616025;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(y_cheb1,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y_cheb1,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y_cheb1,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(y_cheb2,3);
//--- initialization
y_cheb2[0]=0;
y_cheb2[1]=0;
y_cheb2[2]=2;
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y_cheb2,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y_cheb2,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(y_cheb2,CInfOrNaN::NegativeInfinity());
//--- create variables
CBarycentricInterpolantShell p_eqdist;
CBarycentricInterpolantShell p_cheb1;
CBarycentricInterpolantShell p_cheb2;
//--- First,we demonstrate construction of barycentric interpolants on
//--- special grids. We unpack power representation to ensure that
//--- interpolant was built correctly.
//--- In all three cases we should get same quadratic function.
CAlglib::PolynomialBuildEqDist(0.0,2.0,y_eqdist,p_eqdist);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::PolynomialBar2Pow(p_eqdist,a_eqdist);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,3);
//--- initialization
temparray[0]=0;
temparray[1]=-1;
temparray[2]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(a_eqdist,temparray,0.00005);
//--- function call
CAlglib::PolynomialBuildCheb1(-1,+1,y_cheb1,p_cheb1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::PolynomialBar2Pow(p_cheb1,a_cheb1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,3);
//--- initialization
temparray[0]=0;
temparray[1]=-1;
temparray[2]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(a_cheb1,temparray,0.00005);
//--- function call
CAlglib::PolynomialBuildCheb2(-1,+1,y_cheb2,p_cheb2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::PolynomialBar2Pow(p_cheb2,a_cheb2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,3);
//--- initialization
temparray[0]=0;
temparray[1]=-1;
temparray[2]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(a_cheb2,temparray,0.00005);
//--- Now we demonstrate polynomial interpolation withconstruction
//--- of the barycentricinterpolant structure.
//--- We calculate interpolant value at x=-2.
//--- In all three cases we should get same f=6
double t=-2;
//--- check
if(_spoil_scenario==9)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==10)
t=CInfOrNaN::NegativeInfinity();
double v;
//--- function call
v=CAlglib::PolynomialCalcEqDist(0.0,2.0,y_eqdist,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
//--- function call
v=CAlglib::PolynomialCalcCheb1(-1,+1,y_cheb1,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
//--- function call
v=CAlglib::PolynomialCalcCheb2(-1,+1,y_cheb2,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,3);
//--- initialization
x[0]=0;
x[1]=1;
x[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double t=-1;
//--- check
if(_spoil_scenario==8)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
CBarycentricInterpolantShell p;
double v;
//--- function call
CAlglib::PolynomialBuild(x,y,3,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-1;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildEqDist(0.0,2.0,y,3,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_3(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=-0.116025;
y[1]=0;
y[2]=1.616025;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-1;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildCheb1(-1.0,+1.0,y,3,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- create a variable
double v;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_4(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-2;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
a=CInfOrNaN::NegativeInfinity();
b=1;
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
b=CInfOrNaN::NegativeInfinity();
//--- create a variable
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildCheb2(a,b,y,3,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_5(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-1;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
//--- function call
v=CAlglib::PolynomialCalcEqDist(0.0,2.0,y,3,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_6(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=-0.116025;
y[1]=0;
y[2]=1.616025;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-1;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
a=CInfOrNaN::NegativeInfinity();
b=1;
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
b=CInfOrNaN::NegativeInfinity();
//--- function call
v=CAlglib::PolynomialCalcCheb1(a,b,y,3,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_PolInt_T_7(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(y);
t=-2;
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
a=CInfOrNaN::NegativeInfinity();
b=1;
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
b=CInfOrNaN::NegativeInfinity();
//--- function call
v=CAlglib::PolynomialCalcCheb2(a,b,y,3,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x,equidistant grid, barycentric |
//| form |
//+------------------------------------------------------------------+
void TEST_PolInt_T_8(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
t=-1;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildEqDist(0.0,2.0,y,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x, Chebyshev grid (first kind), |
//| barycentric form |
//+------------------------------------------------------------------+
void TEST_PolInt_T_9(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=-0.116025;
y[1]=0;
y[2]=1.616025;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
t=-1;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==5)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::NegativeInfinity();
b=1;
//--- check
if(_spoil_scenario==8)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::NegativeInfinity();
//--- create a variable
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildCheb1(a,b,y,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x, Chebyshev grid (second kind), |
//| barycentric form |
//+------------------------------------------------------------------+
void TEST_PolInt_T_10(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
t=-2;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==5)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::NegativeInfinity();
b=1;
//--- check
if(_spoil_scenario==8)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::NegativeInfinity();
//--- create a variable
CBarycentricInterpolantShell p;
//--- function call
CAlglib::PolynomialBuildCheb2(a,b,y,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x,equidistant grid |
//+------------------------------------------------------------------+
void TEST_PolInt_T_11(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
t=-1;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
//--- function call
v=CAlglib::PolynomialCalcEqDist(0.0,2.0,y,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x,Chebyshev grid (first kind) |
//+------------------------------------------------------------------+
void TEST_PolInt_T_12(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
double t;
double a;
double b;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=-0.116025;
y[1]=0;
y[2]=1.616025;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
t=-1;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
a=-1;
//--- check
if(_spoil_scenario==5)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::NegativeInfinity();
b=+1;
//--- check
if(_spoil_scenario==8)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::NegativeInfinity();
//--- function call
v=CAlglib::PolynomialCalcCheb1(a,b,y,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial interpolation: y=x^2-x,Chebyshev grid (second kind) |
//+------------------------------------------------------------------+
void TEST_PolInt_T_13(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double y[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- allocation
ArrayResize(y,3);
//--- initialization
y[0]=0;
y[1]=0;
y[2]=2;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
double t=-2;
//--- check
if(_spoil_scenario==3)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==4)
t=CInfOrNaN::NegativeInfinity();
double a=-1;
//--- check
if(_spoil_scenario==5)
a=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==6)
a=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==7)
a=CInfOrNaN::NegativeInfinity();
double b=+1;
//--- check
if(_spoil_scenario==8)
b=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==9)
b=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==10)
b=CInfOrNaN::NegativeInfinity();
double v;
//--- function call
v=CAlglib::PolynomialCalcCheb2(a,b,y,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,6.0,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Piecewise linear spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline1D_D_Linear(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- We use piecewise linear spline to interpolate f(x)=x^2 sampled
//--- at 5 equidistant nodes on [-1,+1].
ArrayResize(x,5);
//--- initialization
x[0]=-1;
x[1]=-0.5;
x[2]=0;
x[3]=0.5;
x[4]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,5);
//--- initialization
y[0]=1;
y[1]=0.25;
y[2]=0;
y[3]=0.25;
y[4]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
t=0.25;
//--- check
if(_spoil_scenario==10)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
t=CInfOrNaN::NegativeInfinity();
//--- create a variable
CSpline1DInterpolantShell s;
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- build spline
CAlglib::Spline1DBuildLinear(x,y,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S(0.25) - it is quite different from 0.25^2=0.0625
v=CAlglib::Spline1DCalc(s,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.125,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Cubic spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline1D_D_Cubic(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- We use cubic spline to interpolate f(x)=x^2 sampled
//--- at 5 equidistant nodes on [-1,+1].
//--- First,we use default boundary conditions ("parabolically terminated
//--- spline") because cubic spline built with such boundary conditions
//--- will exactly reproduce any quadratic f(x).
//--- Then we try to use natural boundary conditions
//--- d2S(-1)/dx^2=0.0
//--- d2S(+1)/dx^2=0.0
//--- and see that such spline interpolated f(x) with small error.
ArrayResize(x,5);
//--- initialization
x[0]=-1;
x[1]=-0.5;
x[2]=0;
x[3]=0.5;
x[4]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,5);
//--- initialization
y[0]=1;
y[1]=0.25;
y[2]=0;
y[3]=0.25;
y[4]=1;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double t=0.25;
//--- check
if(_spoil_scenario==8)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
double v;
CSpline1DInterpolantShell s;
int natural_bound_type=2;
//--- Test exact boundary conditions: build S(x),calculare S(0.25)
//--- (almost same as original function)
CAlglib::Spline1DBuildCubic(x,y,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::Spline1DCalc(s,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.0625,0.00001);
//--- Test natural boundary conditions: build S(x),calculare S(0.25)
//--- (small interpolation error)
CAlglib::Spline1DBuildCubic(x,y,5,natural_bound_type,0.0,natural_bound_type,0.0,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::Spline1DCalc(s,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.0580,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Differentiation on the grid using cubic splines |
//+------------------------------------------------------------------+
void TEST_Spline1D_D_GridDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double d1[];
double d2[];
double temparray1[];
double temparray2[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- We use cubic spline to do grid differentiation,i.e. having
//--- values of f(x)=x^2 sampled at 5 equidistant nodes on [-1,+1]
//--- we calculate derivatives of cubic spline at nodes WITHOUT
//--- CONSTRUCTION OF SPLINE OBJECT.
//--- There are efficient functions spline1dgriddiffcubic() and
//--- spline1dgriddiff2cubic() for such calculations.
//--- We use default boundary conditions ("parabolically terminated
//--- spline") because cubic spline built with such boundary conditions
//--- will exactly reproduce any quadratic f(x).
//--- Actually,we could use natural conditions,but we feel that
//--- spline which exactly reproduces f() will show us more
//--- understandable results.
ArrayResize(x,5);
//--- initialization
x[0]=-1;
x[1]=-0.5;
x[2]=0;
x[3]=0.5;
x[4]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,5);
//--- initialization
y[0]=1;
y[1]=0.25;
y[2]=0;
y[3]=0.25;
y[4]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- We calculate first derivatives: they must be equal to 2*x
CAlglib::Spline1DGridDiffCubic(x,y,d1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray1,5);
//--- initialization
temparray1[0]=-2;
temparray1[1]=-1;
temparray1[2]=0;
temparray1[3]=1;
temparray1[4]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(d1,temparray1,0.0001);
//--- Now test griddiff2,which returns first AND second derivatives.
//--- First derivative is 2*x,second is equal to 2.0
CAlglib::Spline1DGridDiff2Cubic(x,y,d1,d2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray2,5);
//--- initialization
temparray2[0]=2;
temparray2[1]=2;
temparray2[2]=2;
temparray2[3]=2;
temparray2[4]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(d1,temparray1,0.0001);
_TestResult=_TestResult && Doc_Test_Real_Vector(d2,temparray2,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Resampling using cubic splines |
//+------------------------------------------------------------------+
void TEST_Spline1D_D_ConvDiff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x_old[];
double y_old[];
double x_new[];
double y_new[];
double d1_new[];
double d2_new[];
double temparray1[];
double temparray2[];
double temparray3[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<11; _spoil_scenario++)
{
//--- We use cubic spline to do resampling,i.e. having
//--- values of f(x)=x^2 sampled at 5 equidistant nodes on [-1,+1]
//--- we calculate values/derivatives of cubic spline on
//--- another grid (equidistant with 9 nodes on [-1,+1])
//--- WITHOUT CONSTRUCTION OF SPLINE OBJECT.
//--- There are efficient functions spline1dconvcubic(),
//--- spline1dconvdiffcubic() and spline1dconvdiff2cubic()
//--- for such calculations.
//--- We use default boundary conditions ("parabolically terminated
//--- spline") because cubic spline built with such boundary conditions
//--- will exactly reproduce any quadratic f(x).
//--- Actually,we could use natural conditions,but we feel that
//--- spline which exactly reproduces f() will show us more
//--- understandable results.
ArrayResize(x_old,5);
//--- initialization
x_old[0]=-1;
x_old[1]=-0.5;
x_old[2]=0;
x_old[3]=0.5;
x_old[4]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x_old,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x_old,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x_old,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x_old);
//--- allocation
ArrayResize(y_old,5);
//--- initialization
y_old[0]=1;
y_old[1]=0.25;
y_old[2]=0;
y_old[3]=0.25;
y_old[4]=1;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y_old,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y_old,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y_old,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y_old);
//--- allocation
ArrayResize(x_new,9);
//--- initialization
x_new[0]=-1;
x_new[1]=-0.75;
x_new[2]=-0.5;
x_new[3]=-0.25;
x_new[4]=0;
x_new[5]=0.25;
x_new[6]=0.5;
x_new[7]=0.75;
x_new[8]=1;
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(x_new,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(x_new,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(x_new,CInfOrNaN::NegativeInfinity());
//--- First,conversion withdifferentiation.
CAlglib::Spline1DConvCubic(x_old,y_old,x_new,y_new);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray1,9);
//--- initialization
temparray1[0]=1;
temparray1[1]=0.5625;
temparray1[2]=0.25;
temparray1[3]=0.0625;
temparray1[4]=0;
temparray1[5]=0.0625;
temparray1[6]=0.25;
temparray1[7]=0.5625;
temparray1[8]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(y_new,temparray1,0.0001);
//--- Then,conversion with differentiation (first derivatives only)
CAlglib::Spline1DConvDiffCubic(x_old,y_old,x_new,y_new,d1_new);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray2,9);
//--- initialization
temparray2[0]=-2;
temparray2[1]=-1.5;
temparray2[2]=-1;
temparray2[3]=-0.5;
temparray2[4]=0;
temparray2[5]=0.5;
temparray2[6]=1.0;
temparray2[7]=1.5;
temparray2[8]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(y_new,temparray1,0.0001);
_TestResult=_TestResult && Doc_Test_Real_Vector(d1_new,temparray2,0.0001);
//--- Finally,conversion with first and second derivatives
CAlglib::Spline1DConvDiff2Cubic(x_old,y_old,x_new,y_new,d1_new,d2_new);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray3,9);
//--- initialization
temparray3[0]=2;
temparray3[1]=2;
temparray3[2]=2;
temparray3[3]=2;
temparray3[4]=2;
temparray3[5]=2;
temparray3[6]=2;
temparray3[7]=2;
temparray3[8]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(y_new,temparray1,0.0001);
_TestResult=_TestResult && Doc_Test_Real_Vector(d1_new,temparray2,0.0001);
_TestResult=_TestResult && Doc_Test_Real_Vector(d2_new,temparray3,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unconstrained dense quadratic programming |
//+------------------------------------------------------------------+
void TEST_MinQP_D_U1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
double b[];
double x0[];
double x[];
double temparray[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<13; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=x0^2 + x1^2 -6*x0 - 4*x1
//--- Exact solution is [x0,x1]=[3,2]
//--- We provide algorithm with starting point,although in this case
//--- (dense matrix,no constraints) it can work withsuch information.
//--- IMPORTANT: this solver minimizes following function:
//--- f(x)=0.5*x'*A*x + b'*x.
//--- Note that quadratic term has 0.5 before it. So if you want to minimize
//--- quadratic function,you should rewrite it in such way that quadratic term
//--- is multiplied by 0.5 too.
//--- For example,our function is f(x)=x0^2+x1^2+...,but we rewrite it as
//--- f(x)=0.5*(2*x0^2+2*x1^2) + ....
//--- and pass diag(2,2) as quadratic term - NOT diag(1,1)!
a.Resize(2,2);
//--- initialization
a.Set(0,0,2);
a.Set(0,1,0);
a.Set(1,0,0);
a.Set(1,1,2);
//--- check
if(_spoil_scenario>=0 && _spoil_scenario<=2)
do
{
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
}
while(CApServ::IsFiniteRTrMatrix(a,2,false));
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(a);
//--- allocation
ArrayResize(b,2);
//--- initialization
b[0]=-6;
b[1]=-4;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(b);
//--- allocation
ArrayResize(x0,2);
//--- initialization
x0[0]=0;
x0[1]=1;
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(x0,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(x0,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(x0,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(x0);
//--- create variables
CMinQPStateShell state;
CMinQPReportShell rep;
//--- function call
CAlglib::MinQPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetQuadraticTerm(state,a);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetLinearTerm(state,b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetStartingPoint(state,x0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=3;
temparray[1]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Constrained dense quadratic programming |
//+------------------------------------------------------------------+
void TEST_MinQP_D_BC1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble a;
double b[];
double x0[];
double bndl[];
double bndu[];
double temparray[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<17; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=x0^2 + x1^2 -6*x0 - 4*x1
//--- subject to bound constraints 0<=x0<=2.5,0<=x1<=2.5
//--- Exact solution is [x0,x1]=[2.5,2]
//--- We provide algorithm with starting point. With such small problem good starting
//--- point is not really necessary,but with high-dimensional problem it can save us
//--- a lot of time.
//--- IMPORTANT: this solver minimizes following function:
//--- f(x)=0.5*x'*A*x + b'*x.
//--- Note that quadratic term has 0.5 before it. So if you want to minimize
//--- quadratic function,you should rewrite it in such way that quadratic term
//--- is multiplied by 0.5 too.
//--- For example,our function is f(x)=x0^2+x1^2+...,but we rewrite it as
//--- f(x)=0.5*(2*x0^2+2*x1^2) + ....
//--- and pass diag(2,2) as quadratic term - NOT diag(1,1)!
a.Resize(2,2);
//--- initialization
a.Set(0,0,2);
a.Set(0,1,0);
a.Set(1,0,0);
a.Set(1,1,2);
//--- check
//--- check
if(_spoil_scenario>=0 && _spoil_scenario<=2)
do
{
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,CInfOrNaN::NegativeInfinity());
}
while(CApServ::IsFiniteRTrMatrix(a,2,false));
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(a);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(a);
//--- allocation
ArrayResize(b,2);
//--- initialization
b[0]=-6;
b[1]=-4;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(b);
//--- allocation
ArrayResize(x0,2);
//--- initialization
x0[0]=0;
x0[1]=1;
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(x0,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(x0,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(x0,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(x0);
//--- allocation
ArrayResize(bndl,2);
//--- initialization
bndl[0]=0;
bndl[1]=0;
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,2);
//--- initialization
bndu[0]=2.5;
bndu[1]=2.5;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Deleting_Element(bndu);
double x[];
CMinQPStateShell state;
CMinQPReportShell rep;
//--- function call
CAlglib::MinQPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetQuadraticTerm(state,a);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetLinearTerm(state,b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetStartingPoint(state,x0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=2.5;
temparray[1]=2;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear least squares optimization using function vector only |
//+------------------------------------------------------------------+
void TEST_MinLM_D_V(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_FVec1 ffvec;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=f0^2+f1^2,where
//--- f0(x0,x1)=10*(x0+3)^2
//--- f1(x0,x1)=(x1-3)^2
//--- using "V" mode of the Levenberg-Marquardt optimizer.
//--- Optimization algorithm uses:
//--- * function vector f[]={f1,f2}
//--- No other information (Jacobian,gradient,etc.) is needed.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==6)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsx=CInfOrNaN::NegativeInfinity();
int maxits=0;
//--- objects of classes
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateV(2,x,0.0001,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffvec,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear least squares optimization using function vector and |
//| Jacobian |
//+------------------------------------------------------------------+
void TEST_MinLM_D_VJ(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
//--- TEST minlm_d_vj
//--- Nonlinear least squares optimization using function vector and Jacobian
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_FVec1 ffvec;
CNDimensional_Jac1 fjac;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=f0^2+f1^2,where
//--- f0(x0,x1)=10*(x0+3)^2
//--- f1(x0,x1)=(x1-3)^2
//--- using "VJ" mode of the Levenberg-Marquardt optimizer.
//--- Optimization algorithm uses:
//--- * function vector f[]={f1,f2}
//--- * Jacobian matrix J={dfi/dxj}.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==6)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateVJ(2,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffvec,fjac,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
//_TestResult = _TestResult && Doc_Test_Int(rep.GetTerminationType(), 4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear Hessian-based optimization for general functions |
//+------------------------------------------------------------------+
void TEST_MinLM_D_FGH(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Grad1 fgrad;
CNDimensional_Hess1 fhess;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=100*(x0+3)^4+(x1-3)^4
//--- using "FGH" mode of the Levenberg-Marquardt optimizer.
//--- F is treated like a monolitic function withinternal structure,
//--- i.e. we do NOT represent it as a sum of squares.
//--- Optimization algorithm uses:
//--- * function value F(x0,x1)
//--- * gradient G={dF/dxi}
//--- * Hessian H={d2F/(dxi*dxj)}
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==6)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateFGH(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffunc,fgrad,fhess,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
//_TestResult = _TestResult && Doc_Test_Int(rep.GetTerminationType(), 4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Bound constrained nonlinear least squares optimization |
//+------------------------------------------------------------------+
void TEST_MinLM_D_VB(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double bndl[];
double bndu[];
double temparray[];
CObject obj;
CNDimensional_FVec1 ffvec;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<13; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=f0^2+f1^2,where
//--- f0(x0,x1)=10*(x0+3)^2
//--- f1(x0,x1)=(x1-3)^2
//--- with boundary constraints
//--- -1 <= x0 <= +1
//--- -1 <= x1 <= +1
//--- using "V" mode of the Levenberg-Marquardt optimizer.
//--- Optimization algorithm uses:
//--- * function vector f[]={f1,f2}
//--- No other information (Jacobian,gradient,etc.) is needed.
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(bndl,2);
//--- initialization
bndl[0]=-1;
bndl[1]=-1;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,2);
//--- initialization
bndu[0]=1;
bndu[1]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(bndu);
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==10)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==11)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==12)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateV(2,x,0.0001,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffvec,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-1;
temparray[1]=1;
//--- check result
//_TestResult = _TestResult && Doc_Test_Int(rep.GetTerminationType(), 4);
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Efficient restarts of LM optimizer |
//+------------------------------------------------------------------+
void TEST_MinLM_D_Restarts(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_FVec1 ffvec1;
CNDimensional_FVec2 ffvec2;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1)=f0^2+f1^2,where
//--- f0(x0,x1)=10*(x0+3)^2
//--- f1(x0,x1)=(x1-3)^2
//--- using several starting points and efficient restarts.
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==3)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==4)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==5)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- create optimizer using minlmcreatev()
ArrayResize(x,2);
//--- initialization
x[0]=10;
x[1]=10;
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MinLMCreateV(2,x,0.0001,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffvec1,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
//--- restart optimizer using minlmrestartfrom()
//--- we can use different starting point,different function,
//--- different stopping conditions,but problem size
//--- must remain unchanged.
ArrayResize(x,2);
//--- initialization
x[0]=4;
x[1]=4;
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- function call
CAlglib::MinLMRestartFrom(state,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffvec2,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=0;
temparray[1]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear least squares optimization, FJ scheme (obsolete, but |
//| supported) |
//+------------------------------------------------------------------+
void TEST_MinLM_T_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Jac1 fjac;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
double epsg=0.0000000001;
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==6)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsx=CInfOrNaN::NegativeInfinity();
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateFJ(2,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffunc,fjac,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear least squares optimization, FGJ scheme (obsolete, but |
//| supported) |
//+------------------------------------------------------------------+
void TEST_MinLM_T_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double s[];
double temparray[];
CObject obj;
CNDimensional_Func1 ffunc;
CNDimensional_Grad1 fgrad;
CNDimensional_Jac1 fjac;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=0;
x[1]=0;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
ArrayResize(s,2);
ArrayInitialize(s,1);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
double epsx=0.0000000001;
//--- check
if(_spoil_scenario==6)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==7)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==8)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
CMinLMStateShell state;
CMinLMReportShell rep;
//--- function call
CAlglib::MinLMCreateFGJ(2,x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMOptimize(state,ffunc,fgrad,fjac,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::MinLMResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=-3;
temparray[1]=3;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(x,temparray,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear fitting using function value only |
//+------------------------------------------------------------------+
void TEST_LSFit_D_NLF(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
double y[];
double c[];
double temparray[];
double w[];
CObject obj;
CNDimensional_CX_1_Func fcx1func;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<19; _spoil_scenario++)
{
//--- In this example we demonstrate exponential fitting
//--- by f(x)=exp(-c*x^2)
//--- using function value only.
//--- Gradient is estimated using combination of numerical differences
//--- and secant updates. diffstep variable stores differentiation step
//--- (we have to tell algorithm what step to use).
x.Resize(11,1);
//--- initialization
x.Set(0,0,-1);
x.Set(1,0,-0.8);
x.Set(2,0,-0.6);
x.Set(3,0,-0.4);
x.Set(4,0,-0.2);
x.Set(5,0,0);
x.Set(6,0,0.2);
x.Set(7,0,0.4);
x.Set(8,0,0.6);
x.Set(9,0,0.8);
x.Set(10,0,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0.22313;
y[1]=0.382893;
y[2]=0.582748;
y[3]=0.786628;
y[4]=0.941765;
y[5]=1;
y[6]=0.941765;
y[7]=0.786628;
y[8]=0.582748;
y[9]=0.382893;
y[10]=0.22313;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(c,1);
//--- initialization
c[0]=0.3;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(c,CInfOrNaN::NegativeInfinity());
double epsx=0.000001;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
int info;
CLSFitStateShell state;
CLSFitReportShell rep;
double diffstep=0.0001;
//--- check
if(_spoil_scenario==16)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==17)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==18)
diffstep=CInfOrNaN::NegativeInfinity();
//--- Fitting withweights
CAlglib::LSFitCreateF(x,y,c,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
//--- Fitting with weights
//--- (you can change weights and see how it changes result)
ArrayResize(w,11);
//--- initialization
w[0]=1;
w[1]=1;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==22)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==23)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==24)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==25)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==26)
Spoil_Vector_By_Deleting_Element(w);
//--- function call
CAlglib::LSFitCreateWF(x,y,w,c,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear fitting using gradient |
//+------------------------------------------------------------------+
void TEST_LSFit_D_NLFG(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
double y[];
double c[];
double temparray[];
double w[];
CObject obj;
CNDimensional_CX_1_Func fcx1func;
CNDimensional_CX_1_Grad fcx1grad;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<21; _spoil_scenario++)
{
//--- In this example we demonstrate exponential fitting
//--- by f(x)=exp(-c*x^2)
//--- using function value and gradient (with respect to c).
x.Resize(11,1);
//--- initialization
x.Set(0,0,-1);
x.Set(1,0,-0.8);
x.Set(2,0,-0.6);
x.Set(3,0,-0.4);
x.Set(4,0,-0.2);
x.Set(5,0,0);
x.Set(6,0,0.2);
x.Set(7,0,0.4);
x.Set(8,0,0.6);
x.Set(9,0,0.8);
x.Set(10,0,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0.22313;
y[1]=0.382893;
y[2]=0.582748;
y[3]=0.786628;
y[4]=0.941765;
y[5]=1;
y[6]=0.941765;
y[7]=0.786628;
y[8]=0.582748;
y[9]=0.382893;
y[10]=0.22313;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(c,1);
//--- initialization
c[0]=0.3;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(c,CInfOrNaN::NegativeInfinity());
double epsx=0.000001;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
int info;
CLSFitStateShell state;
CLSFitReportShell rep;
//--- Fitting withweights
CAlglib::LSFitCreateFG(x,y,c,true,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,fcx1grad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
//--- Fitting with weights
//--- (you can change weights and see how it changes result)
ArrayResize(w,11);
//--- initialization
w[0]=1;
w[1]=1;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Deleting_Element(w);
//--- function call
CAlglib::LSFitCreateWFG(x,y,w,c,true,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,fcx1grad,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear fitting using gradient and Hessian |
//+------------------------------------------------------------------+
void TEST_LSFit_D_NLFGH(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
double y[];
double c[];
double temparray[];
double w[];
CObject obj;
CNDimensional_CX_1_Func fcx1func;
CNDimensional_CX_1_Grad fcx1grad;
CNDimensional_CX_1_Hess fcx1hess;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<21; _spoil_scenario++)
{
//--- In this example we demonstrate exponential fitting
//--- by f(x)=exp(-c*x^2)
//--- using function value,gradient and Hessian (with respect to c)
x.Resize(11,1);
//--- initialization
x.Set(0,0,-1);
x.Set(1,0,-0.8);
x.Set(2,0,-0.6);
x.Set(3,0,-0.4);
x.Set(4,0,-0.2);
x.Set(5,0,0);
x.Set(6,0,0.2);
x.Set(7,0,0.4);
x.Set(8,0,0.6);
x.Set(9,0,0.8);
x.Set(10,0,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0.22313;
y[1]=0.382893;
y[2]=0.582748;
y[3]=0.786628;
y[4]=0.941765;
y[5]=1;
y[6]=0.941765;
y[7]=0.786628;
y[8]=0.582748;
y[9]=0.382893;
y[10]=0.22313;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(c,1);
//--- initialization
c[0]=0.3;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(c,CInfOrNaN::NegativeInfinity());
double epsx=0.000001;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
int info;
CLSFitStateShell state;
CLSFitReportShell rep;
//--- Fitting withweights
CAlglib::LSFitCreateFGH(x,y,c,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,fcx1grad,fcx1hess,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
//--- Fitting with weights
//--- (you can change weights and see how it changes result)
ArrayResize(w,11);
//--- initialization
w[0]=1;
w[1]=1;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Deleting_Element(w);
//--- function call
CAlglib::LSFitCreateWFGH(x,y,w,c,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,fcx1grad,fcx1hess,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.5;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Bound contstrained nonlinear fitting using function value only |
//+------------------------------------------------------------------+
void TEST_LSFit_D_NLFB(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
double y[];
double c[];
double temparray[];
double w[];
double bndl[];
double bndu[];
CObject obj;
CNDimensional_CX_1_Func fcx1func;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<23; _spoil_scenario++)
{
//--- In this example we demonstrate exponential fitting by
//--- f(x)=exp(-c*x^2)
//--- subject to bound constraints
//--- 0.0 <= c <= 1.0
//--- using function value only.
//--- Gradient is estimated using combination of numerical differences
//--- and secant updates. diffstep variable stores differentiation step
//--- (we have to tell algorithm what step to use).
//--- Unconstrained solution is c=1.5,but because of constraints we should
//--- get c=1.0 (at the boundary).
x.Resize(11,1);
//--- initialization
x.Set(0,0,-1);
x.Set(1,0,-0.8);
x.Set(2,0,-0.6);
x.Set(3,0,-0.4);
x.Set(4,0,-0.2);
x.Set(5,0,0);
x.Set(6,0,0.2);
x.Set(7,0,0.4);
x.Set(8,0,0.6);
x.Set(9,0,0.8);
x.Set(10,0,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0.22313;
y[1]=0.382893;
y[2]=0.582748;
y[3]=0.786628;
y[4]=0.941765;
y[5]=1;
y[6]=0.941765;
y[7]=0.786628;
y[8]=0.582748;
y[9]=0.382893;
y[10]=0.22313;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(c,1);
//--- initialization
c[0]=0.3;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(c,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(bndl,1);
//--- initialization
bndl[0]=0;
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,1);
//--- initialization
bndu[0]=1;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Deleting_Element(bndu);
double epsx=0.000001;
//--- check
if(_spoil_scenario==17)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==18)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==19)
epsx=CInfOrNaN::NegativeInfinity();
//--- create variables
int maxits=0;
int info;
CLSFitStateShell state;
CLSFitReportShell rep;
double diffstep=0.0001;
//--- check
if(_spoil_scenario==20)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==21)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==22)
diffstep=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::LSFitCreateF(x,y,c,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fcx1func,frep,0,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1;
//--- check result
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear fitting with custom scaling and bound constraints |
//+------------------------------------------------------------------+
void TEST_LSFit_D_NLScale(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble x;
double y[];
double c[];
double bndl[];
double bndu[];
double s[];
double temparray[];
CObject obj;
CNDimensional_Debt_Func fdebtfunc;
CNDimensional_Rep frep;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<27; _spoil_scenario++)
{
//--- In this example we demonstrate fitting by
//--- f(x)=c[0]*(1+c[1]*((x-1999)^c[2]-1))
//--- subject to bound constraints
//--- -INF < c[0] < +INF
//--- -10 <= c[1] <= +10
//--- 0.1 <= c[2] <= 2.0
//--- Data we want to fit are time series of Japan national debt
//--- collected from 2000 to 2008 measured in USD (dollars,not
//--- millions of dollars).
//--- Our variables are:
//--- c[0] - debt value at initial moment (2000),
//--- c[1] - direction coefficient (growth or decrease),
//--- c[2] - curvature coefficient.
//--- You may see that our variables are badly scaled - first one
//--- is order of 10^12,and next two are somewhere ab1 in
//--- magnitude. Such problem is difficult to solve withsome
//--- kind of scaling.
//--- That is exactly where lsfitsetscale() function can be used.
//--- We set scale of our variables to [1.0E12,1,1],which allows
//--- us to easily solve this problem.
//--- You can try commenting lsfitsetscale() call - and you will
//--- see that algorithm will fail to converge.
x.Resize(9,1);
//--- initialization
x.Set(0,0,2000);
x.Set(1,0,2001);
x.Set(2,0,2002);
x.Set(3,0,2003);
x.Set(4,0,2004);
x.Set(5,0,2005);
x.Set(6,0,2006);
x.Set(7,0,2007);
x.Set(8,0,2008);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- allocation
ArrayResize(y,9);
//--- initialization
y[0]=4323239600000.0;
y[1]=4560913100000.0;
y[2]=5564091500000.0;
y[3]=6743189300000.0;
y[4]=7284064600000.0;
y[5]=7050129600000.0;
y[6]=7092221500000.0;
y[7]=8483907600000.0;
y[8]=8625804400000.0;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(c,3);
//--- initialization
c[0]=1.0e+13;
c[1]=1;
c[2]=1;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(c,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(c,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(c,CInfOrNaN::NegativeInfinity());
double epsx=1.0e-5;
//--- check
if(_spoil_scenario==13)
epsx=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
epsx=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
epsx=CInfOrNaN::NegativeInfinity();
//--- allocation
ArrayResize(bndl,3);
//--- initialization
bndl[0]=-CInfOrNaN::PositiveInfinity();
bndl[1]=-10;
bndl[2]=0.1;
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(bndl,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Deleting_Element(bndl);
//--- allocation
ArrayResize(bndu,3);
//--- initialization
bndu[0]=CInfOrNaN::PositiveInfinity();
bndu[1]=10;
bndu[2]=2;
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Value(bndu,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Deleting_Element(bndu);
//--- allocation
ArrayResize(s,3);
//--- initialization
s[0]=1.0e+12;
s[1]=1;
s[2]=1;
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Value(s,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==21)
Spoil_Vector_By_Value(s,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==22)
Spoil_Vector_By_Value(s,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==23)
Spoil_Vector_By_Deleting_Element(s);
//--- create variables
int maxits=0;
int info;
CLSFitStateShell state;
CLSFitReportShell rep;
double diffstep=1.0e-5;
//--- check
if(_spoil_scenario==24)
diffstep=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==25)
diffstep=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==26)
diffstep=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::LSFitCreateF(x,y,c,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitFit(state,fdebtfunc,frep,false,obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
CAlglib::LSFitResults(state,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,3);
//--- initialization
temparray[0]=4.142560e+12;
temparray[1]=0.43424;
temparray[2]=0.565376;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,2);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,-0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unconstrained (general) linear least squares fitting with and |
//| withweights |
//+------------------------------------------------------------------+
void TEST_LSFit_D_Lin(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble fmatrix;
int info;
double c[];
double y[];
double temparray[];
double w[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<13; _spoil_scenario++)
{
//--- In this example we demonstrate linear fitting by f(x|a)=a*exp(0.5*x).
//--- We have:
//--- * y - vector of experimental data
//--- * fmatrix - matrix of basis functions calculated at sample points
//--- Actually,we have only one basis function F0=exp(0.5*x).
fmatrix.Resize(11,1);
//--- initialization
fmatrix.Set(0,0,0.606531);
fmatrix.Set(1,0,0.67032);
fmatrix.Set(2,0,0.740818);
fmatrix.Set(3,0,0.818731);
fmatrix.Set(4,0,0.904837);
fmatrix.Set(5,0,1);
fmatrix.Set(6,0,1.105171);
fmatrix.Set(7,0,1.221403);
fmatrix.Set(8,0,1.349859);
fmatrix.Set(9,0,1.491825);
fmatrix.Set(10,0,1.648721);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::NegativeInfinity());
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=1.133719;
y[1]=1.306522;
y[2]=1.504604;
y[3]=1.554663;
y[4]=1.884638;
y[5]=2.072436;
y[6]=2.257285;
y[7]=2.534068;
y[8]=2.622017;
y[9]=2.897713;
y[10]=3.219371;
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
//--- create a variable
CLSFitReportShell rep;
//--- Linear fitting withweights
CAlglib::LSFitLinear(y,fmatrix,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.9865;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.00005);
//--- Linear fitting with individual weights.
//--- Slightly different result is returned.
ArrayResize(w,11);
//--- initialization
w[0]=1.414213;
w[1]=1;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(w);
//--- function call
CAlglib::LSFitLinearW(y,w,fmatrix,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,1);
//--- initialization
temparray[0]=1.983354;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Constrained (general) linear least squares fitting with and |
//| withweights |
//+------------------------------------------------------------------+
void TEST_LSFit_D_Linc(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
CMatrixDouble fmatrix;
CMatrixDouble cmatrix;
double y[];
double c[];
double temparray[];
double w[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<20; _spoil_scenario++)
{
//--- In this example we demonstrate linear fitting by f(x|a,b)=a*x+b
//--- with simple constraint f(0)=0.
//--- We have:
//--- * y - vector of experimental data
//--- * fmatrix - matrix of basis functions sampled at [0,1] with step 0.2:
//--- [ 1.0 0.0 ]
//--- [ 1.0 0.2 ]
//--- [ 1.0 0.4 ]
//--- [ 1.0 0.6 ]
//--- [ 1.0 0.8 ]
//--- [ 1.0 1.0 ]
//--- first column contains value of first basis function (constant term)
//--- second column contains second basis function (linear term)
//--- * cmatrix - matrix of linear constraints:
//--- [ 1.0 0.0 0.0 ]
//--- first two columns contain coefficients before basis functions,
//--- last column contains desired value of their sum.
//--- So [1,0,0] means "1*constant_term + 0*linear_term=0"
ArrayResize(y,6);
//--- initialization
y[0]=0.072436;
y[1]=0.246944;
y[2]=0.491263;
y[3]=0.5223;
y[4]=0.714064;
y[5]=0.921929;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
fmatrix.Resize(6,2);
//--- initialization
fmatrix.Set(0,0,1);
fmatrix.Set(0,1,0);
fmatrix.Set(1,0,1);
fmatrix.Set(1,1,0.2);
fmatrix.Set(2,0,1);
fmatrix.Set(2,1,0.4);
fmatrix.Set(3,0,1);
fmatrix.Set(3,1,0.6);
fmatrix.Set(4,0,1);
fmatrix.Set(4,1,0.8);
fmatrix.Set(5,0,1);
fmatrix.Set(5,1,1);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Matrix_By_Value(fmatrix,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Matrix_By_Adding_Row(fmatrix);
//--- check
if(_spoil_scenario==9)
Spoil_Matrix_By_Adding_Col(fmatrix);
//--- check
if(_spoil_scenario==10)
Spoil_Matrix_By_Deleting_Row(fmatrix);
//--- check
if(_spoil_scenario==11)
Spoil_Matrix_By_Deleting_Col(fmatrix);
//--- allocation
cmatrix.Resize(1,3);
//--- initialization
cmatrix.Set(0,0,1);
cmatrix.Set(0,1,0);
cmatrix.Set(0,2,0);
//--- check
if(_spoil_scenario==12)
Spoil_Matrix_By_Value(cmatrix,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==13)
Spoil_Matrix_By_Value(cmatrix,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==14)
Spoil_Matrix_By_Value(cmatrix,CInfOrNaN::NegativeInfinity());
//--- create variables
int info;
CLSFitReportShell rep;
//--- Constrained fitting withweights
CAlglib::LSFitLinearC(y,fmatrix,cmatrix,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=0;
temparray[1]=0.932933;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.0005);
//--- Constrained fitting with individual weights
ArrayResize(w,6);
//--- initialization
w[0]=1;
w[1]=1.414213;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Deleting_Element(w);
//--- function call
CAlglib::LSFitLinearWC(y,w,fmatrix,cmatrix,info,c,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- allocation
ArrayResize(temparray,2);
//--- initialization
temparray[0]=0;
temparray[1]=0.938322;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && Doc_Test_Real_Vector(c,temparray,0.0005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unconstrained polynomial fitting |
//+------------------------------------------------------------------+
void TEST_LSFit_D_Pol(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double w[];
double xc[];
double yc[];
int dc[];
int m;
double t;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<20; _spoil_scenario++)
{
//--- This example demonstrates polynomial fitting.
//--- Fitting is done by two (M=2) functions from polynomial basis:
//--- f0=1
//--- f1=x
//--- Basically,it just a linear fit;more complex polynomials may be used
//--- (e.g. parabolas with M=3,cubic with M=4),but even such simple fit allows
//--- us to demonstrate polynomialfit() function in action.
//--- We have:
//--- * x set of abscissas
//--- * y experimental data
//--- Additionally we demonstrate weighted fitting,where second point has
//--- more weight than other ones.
ArrayResize(x,11);
//--- initialization
x[0]=0;
x[1]=0.1;
x[2]=0.2;
x[3]=0.3;
x[4]=0.4;
x[5]=0.5;
x[6]=0.6;
x[7]=0.7;
x[8]=0.8;
x[9]=0.9;
x[10]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0;
y[1]=0.05;
y[2]=0.26;
y[3]=0.32;
y[4]=0.33;
y[5]=0.43;
y[6]=0.6;
y[7]=0.6;
y[8]=0.77;
y[9]=0.98;
y[10]=1.02;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
m=2;
t=2;
//--- check
if(_spoil_scenario==10)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==11)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
int info;
CBarycentricInterpolantShell p;
CPolynomialFitReportShell rep;
//--- Fitting withindividual weights
//--- NOTE: result is returned as barycentricinterpolant structure.
//--- if you want to get representation in the power basis,
//--- you can use barycentricbar2pow() function to convert
//--- from barycentric to power representation (see docs for
//--- POLINT subpackage for more info).
CAlglib::PolynomialFit(x,y,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.011,0.002);
//--- Fitting with individual weights
//--- NOTE: slightly different result is returned
ArrayResize(w,11);
//--- initialization
w[0]=1;
w[1]=1.414213562;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Deleting_Element(w);
//--- allocation
ArrayResize(xc,0);
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Adding_Element(xc);
//--- allocation
ArrayResize(yc,0);
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Adding_Element(yc);
//--- allocation
ArrayResize(dc,0);
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Adding_Element(dc);
//--- function call
CAlglib::PolynomialFitWC(x,y,w,xc,yc,dc,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.023,0.002);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Constrained polynomial fitting |
//+------------------------------------------------------------------+
void TEST_LSFit_D_Polc(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double w[];
double xc[];
double yc[];
int dc[];
int m;
int info;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<29; _spoil_scenario++)
{
//--- This example demonstrates polynomial fitting.
//--- Fitting is done by two (M=2) functions from polynomial basis:
//--- f0=1
//--- f1=x
//--- with simple constraint on function value
//--- f(0)=0
//--- Basically,it just a linear fit;more complex polynomials may be used
//--- (e.g. parabolas with M=3,cubic with M=4),but even such simple fit allows
//--- us to demonstrate polynomialfit() function in action.
//--- We have:
//--- * x set of abscissas
//--- * y experimental data
//--- * xc points where constraints are placed
//--- * yc constraints on derivatives
//--- * dc derivative indices
//--- (0 means function itself,1 means first derivative)
ArrayResize(x,2);
//--- initialization
x[0]=1;
x[1]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,2);
//--- initialization
y[0]=0.9;
y[1]=1.1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(w,2);
//--- initialization
w[0]=1;
w[1]=1;
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Adding_Element(w);
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(w);
//--- allocation
ArrayResize(xc,1);
//--- initialization
xc[0]=0;
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Value(xc,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(xc,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(xc,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Adding_Element(xc);
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Deleting_Element(xc);
//--- allocation
ArrayResize(yc,1);
//--- initialization
yc[0]=0;
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Value(yc,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==21)
Spoil_Vector_By_Value(yc,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==22)
Spoil_Vector_By_Value(yc,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==23)
Spoil_Vector_By_Adding_Element(yc);
//--- check
if(_spoil_scenario==24)
Spoil_Vector_By_Deleting_Element(yc);
//--- allocation
ArrayResize(dc,1);
//--- initialization
dc[0]=0;
//--- check
if(_spoil_scenario==25)
Spoil_Vector_By_Adding_Element(dc);
//--- check
if(_spoil_scenario==26)
Spoil_Vector_By_Deleting_Element(dc);
double t=2;
//--- check
if(_spoil_scenario==27)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==28)
t=CInfOrNaN::NegativeInfinity();
m=2;
//--- create variables
CBarycentricInterpolantShell p;
CPolynomialFitReportShell rep;
//--- function call
CAlglib::PolynomialFitWC(x,y,w,xc,yc,dc,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.000,0.001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unconstrained fitting by penalized regression spline |
//+------------------------------------------------------------------+
void TEST_LSFit_D_Spline(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
int info;
double v;
double rho;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<19; _spoil_scenario++)
{
//--- In this example we demonstrate penalized spline fitting of noisy data
//--- We have:
//--- * x - abscissas
//--- * y - vector of experimental data,straight line with small noise
ArrayResize(x,10);
//--- initialization
x[0]=0;
x[1]=0.1;
x[2]=0.2;
x[3]=0.3;
x[4]=0.4;
x[5]=0.5;
x[6]=0.6;
x[7]=0.7;
x[8]=0.8;
x[9]=0.9;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,10);
//--- initialization
y[0]=0.1;
y[1]=0;
y[2]=0.3;
y[3]=0.4;
y[4]=0.3;
y[5]=0.4;
y[6]=0.62;
y[7]=0.68;
y[8]=0.75;
y[9]=0.95;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
//--- create variables
CSpline1DInterpolantShell s;
CSpline1DFitReportShell rep;
//--- Fit with VERY small amount of smoothing (rho=-5.0)
//--- and large number of basis functions (M=50).
//--- With such small regularization penalized spline almost fully reproduces function values
rho=-5.0;
//--- check
if(_spoil_scenario==10)
rho=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==11)
rho=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==12)
rho=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::Spline1DFitPenalized(x,y,50,rho,info,s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
//--- function call
v=CAlglib::Spline1DCalc(s,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.10,0.01);
//--- Fit with VERY large amount of smoothing (rho=10.0)
//--- and large number of basis functions (M=50).
//--- With such regularization our spline should become close to the straight line fit.
//--- We will compare its value in x=1.0 with results obtained from such fit.
rho=+10.0;
//--- check
if(_spoil_scenario==13)
rho=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==14)
rho=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==15)
rho=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::Spline1DFitPenalized(x,y,50,rho,info,s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
//--- function call
v=CAlglib::Spline1DCalc(s,1.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,0.969,0.001);
//--- In real life applications you may need some moderate degree of fitting,
//--- so we try to fit once more with rho=3.0.
rho=+3.0;
//--- check
if(_spoil_scenario==16)
rho=CInfOrNaN::NaN();
//--- check
if(_spoil_scenario==17)
rho=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==18)
rho=CInfOrNaN::NegativeInfinity();
//--- function call
CAlglib::Spline1DFitPenalized(x,y,50,rho,info,s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Int(info,1);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial fitting, full list of parameters. |
//+------------------------------------------------------------------+
void TEST_LSFit_T_PolFit_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
int info;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,11);
//--- initialization
x[0]=0;
x[1]=0.1;
x[2]=0.2;
x[3]=0.3;
x[4]=0.4;
x[5]=0.5;
x[6]=0.6;
x[7]=0.7;
x[8]=0.8;
x[9]=0.9;
x[10]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0;
y[1]=0.05;
y[2]=0.26;
y[3]=0.32;
y[4]=0.33;
y[5]=0.43;
y[6]=0.6;
y[7]=0.6;
y[8]=0.77;
y[9]=0.98;
y[10]=1.02;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
int m=2;
double t=2;
//--- check
if(_spoil_scenario==8)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==9)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
CBarycentricInterpolantShell p;
CPolynomialFitReportShell rep;
//--- function call
CAlglib::PolynomialFit(x,y,11,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.011,0.002);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial fitting, full list of parameters. |
//+------------------------------------------------------------------+
void TEST_LSFit_T_PolFit_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double w[];
double xc[];
double yc[];
int dc[];
int m;
double t;
int info;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<14; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,11);
//--- initialization
x[0]=0;
x[1]=0.1;
x[2]=0.2;
x[3]=0.3;
x[4]=0.4;
x[5]=0.5;
x[6]=0.6;
x[7]=0.7;
x[8]=0.8;
x[9]=0.9;
x[10]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,11);
//--- initialization
y[0]=0;
y[1]=0.05;
y[2]=0.26;
y[3]=0.32;
y[4]=0.33;
y[5]=0.43;
y[6]=0.6;
y[7]=0.6;
y[8]=0.77;
y[9]=0.98;
y[10]=1.02;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(w,11);
//--- initialization
w[0]=1;
w[1]=1.414213562;
w[2]=1;
w[3]=1;
w[4]=1;
w[5]=1;
w[6]=1;
w[7]=1;
w[8]=1;
w[9]=1;
w[10]=1;
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(w);
//--- allocation
ArrayResize(xc,0);
ArrayResize(yc,0);
ArrayResize(dc,0);
//--- initialization
m=2;
t=2;
//--- check
if(_spoil_scenario==12)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==13)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
CBarycentricInterpolantShell p;
CPolynomialFitReportShell rep;
//--- function call
CAlglib::PolynomialFitWC(x,y,w,11,xc,yc,dc,0,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.023,0.002);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Polynomial fitting,full list of parameters. |
//+------------------------------------------------------------------+
void TEST_LSFit_T_PolFit_3(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double x[];
double y[];
double w[];
double xc[];
double yc[];
int dc[];
int m;
double t;
int info;
double v;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<23; _spoil_scenario++)
{
//--- allocation
ArrayResize(x,2);
//--- initialization
x[0]=1;
x[1]=1;
//--- check
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
//--- allocation
ArrayResize(y,2);
//--- initialization
y[0]=0.9;
y[1]=1.1;
//--- check
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
//--- allocation
ArrayResize(w,2);
//--- initialization
w[0]=1;
w[1]=1;
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Value(w,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==9)
Spoil_Vector_By_Value(w,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==10)
Spoil_Vector_By_Value(w,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(w);
//--- allocation
ArrayResize(xc,1);
//--- initialization
xc[0]=0;
//--- check
if(_spoil_scenario==12)
Spoil_Vector_By_Value(xc,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==13)
Spoil_Vector_By_Value(xc,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==14)
Spoil_Vector_By_Value(xc,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==15)
Spoil_Vector_By_Deleting_Element(xc);
//--- allocation
ArrayResize(yc,1);
//--- initialization
yc[0]=0;
//--- check
if(_spoil_scenario==16)
Spoil_Vector_By_Value(yc,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==17)
Spoil_Vector_By_Value(yc,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==18)
Spoil_Vector_By_Value(yc,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==19)
Spoil_Vector_By_Deleting_Element(yc);
//--- allocation
ArrayResize(dc,1);
//--- initialization
dc[0]=0;
//--- check
if(_spoil_scenario==20)
Spoil_Vector_By_Deleting_Element(dc);
m=2;
t=2;
//--- check
if(_spoil_scenario==21)
t=CInfOrNaN::PositiveInfinity();
//--- check
if(_spoil_scenario==22)
t=CInfOrNaN::NegativeInfinity();
//--- create variables
CBarycentricInterpolantShell p;
CPolynomialFitReportShell rep;
//--- function call
CAlglib::PolynomialFitWC(x,y,w,2,xc,yc,dc,1,m,info,p,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- function call
v=CAlglib::BarycentricCalc(p,t);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(v,2.000,0.001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, real matrix, short form |
//+------------------------------------------------------------------+
void TEST_MatDet_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a;
CMatrixDouble b;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,1);
b.Set(0,1,2);
b.Set(1,0,2);
b.Set(1,1,1);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(b);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::RMatrixDet(b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(a,-3,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, real matrix, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_D_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a;
CMatrixDouble b;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,5);
b.Set(0,1,4);
b.Set(1,0,4);
b.Set(1,1,5);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::RMatrixDet(b,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(a,9,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix, short form |
//+------------------------------------------------------------------+
void TEST_MatDet_D_3(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
complex tempcomplex1;
complex tempcomplex2;
complex tempcomplex3;
CMatrixComplex b;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- initialization
tempcomplex1.real=1;
tempcomplex1.imag=1;
tempcomplex2.real=1;
tempcomplex2.imag=-1;
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,tempcomplex1);
b.Set(0,1,2);
b.Set(1,0,2);
b.Set(1,1,tempcomplex2);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(b);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::CMatrixDet(b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex3.real=-2;
tempcomplex3.imag=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex3,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_D_4(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
complex tempcomplex1;
complex tempcomplex2;
complex tempcomplex3;
CMatrixComplex b;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=5;
tempcomplex2.real=0;
tempcomplex2.imag=4;
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,tempcomplex1);
b.Set(0,1,4);
b.Set(1,0,tempcomplex2);
b.Set(1,1,5);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::CMatrixDet(b,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex3.real=0;
tempcomplex3.imag=9;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex3,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix with zero imaginary part,|
//| short form |
//+------------------------------------------------------------------+
void TEST_MatDet_D_5(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
complex tempcomplex;
CMatrixComplex b;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,9);
b.Set(0,1,1);
b.Set(1,0,2);
b.Set(1,1,1);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(b);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::CMatrixDet(b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex.real=7;
tempcomplex.imag=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, real matrix, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_0(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a;
CMatrixDouble b;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,3);
b.Set(0,1,4);
b.Set(1,0,-4);
b.Set(1,1,3);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::RMatrixDet(b,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(a,25,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, real matrix, LU, short form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a;
CMatrixDouble b;
int p[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,1);
b.Set(0,1,2);
b.Set(1,0,2);
b.Set(1,1,5);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(b);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(b);
//--- allocation
ArrayResize(p,2);
//--- initialization
p[0]=1;
p[1]=1;
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Adding_Element(p);
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(p);
//--- function call
a=CAlglib::RMatrixLUDet(b,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(a,-5,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, real matrix, LU, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
double a;
int p[];
CMatrixDouble b;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,5);
b.Set(0,1,4);
b.Set(1,0,4);
b.Set(1,1,5);
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,CInfOrNaN::NaN());
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,CInfOrNaN::PositiveInfinity());
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,CInfOrNaN::NegativeInfinity());
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- allocation
ArrayResize(p,2);
//--- initialization
p[0]=0;
p[1]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Deleting_Element(p);
//--- function call
a=CAlglib::RMatrixLUDet(b,p,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- check result
_TestResult=_TestResult && Doc_Test_Real(a,25,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_3(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
CMatrixComplex b;
complex tempcomplex1;
complex tempcomplex2;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=5;
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,tempcomplex1);
b.Set(0,1,4);
b.Set(1,0,-4);
b.Set(1,1,tempcomplex1);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- function call
a=CAlglib::CMatrixDet(b,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex2.real=-9;
tempcomplex2.imag=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex2,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix, LU, short form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_4(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
int p[];
complex tempcomplex1;
complex tempcomplex2;
CMatrixComplex b;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=5;
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,1);
b.Set(0,1,2);
b.Set(1,0,2);
b.Set(1,1,tempcomplex1);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Adding_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Adding_Col(b);
//--- check
if(_spoil_scenario==5)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==6)
Spoil_Matrix_By_Deleting_Col(b);
//--- allocation
ArrayResize(p,2);
//--- initialization
p[0]=1;
p[1]=1;
//--- check
if(_spoil_scenario==7)
Spoil_Vector_By_Adding_Element(p);
//--- check
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(p);
//--- function call
a=CAlglib::CMatrixLUDet(b,p);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex2.real=0;
tempcomplex2.imag=-5;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex2,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Determinant calculation, complex matrix, LU, full form |
//+------------------------------------------------------------------+
void TEST_MatDet_T_5(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- create variables
complex a;
complex tempcomplex1;
complex tempcomplex2;
CMatrixComplex b;
complex cnan;
complex cpositiveinfinity;
complex cnegativeinfinity;
int p[];
//--- testing
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- initialization
tempcomplex1.real=0;
tempcomplex1.imag=4;
//--- allocation
b.Resize(2,2);
//--- initialization
b.Set(0,0,5);
b.Set(0,1,tempcomplex1);
b.Set(1,0,4);
b.Set(1,1,5);
//--- initialization
cnan.real=CInfOrNaN::NaN();
cnan.imag=CInfOrNaN::NaN();
cpositiveinfinity.real=CInfOrNaN::PositiveInfinity();
cpositiveinfinity.imag=CInfOrNaN::PositiveInfinity();
cnegativeinfinity.real=CInfOrNaN::NegativeInfinity();
cnegativeinfinity.imag=CInfOrNaN::NegativeInfinity();
//--- check
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(b,cnan);
//--- check
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(b,cpositiveinfinity);
//--- check
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(b,cnegativeinfinity);
//--- check
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(b);
//--- check
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(b);
//--- allocation
ArrayResize(p,2);
//--- initialization
p[0]=0;
p[1]=1;
//--- check
if(_spoil_scenario==5)
Spoil_Vector_By_Deleting_Element(p);
//--- function call
a=CAlglib::CMatrixLUDet(b,p,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- initialization
tempcomplex2.real=25;
tempcomplex2.imag=0;
//--- check result
_TestResult=_TestResult && Doc_Test_Complex(a,tempcomplex2,0.0001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
//--- check
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
//--- change total result
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Matrix multiplication (single-threaded) |
//+------------------------------------------------------------------+
void TEST_Ablas_D_Gemm(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
_spoil_scenario=-1;
matrix<double> A={{2,1},{1,3}};
CMatrixDouble a=A;
matrix<double> B={{2,1},{0,1}};
CMatrixDouble b=B;
CMatrixDouble c=matrix<double>::Zeros(2,2);
//--- rmatrixgemm() function allows us to calculate matrix product C:=A*B or
//--- to perform more general operation, C:=alpha*op1(A)*op2(B)+beta*C,
//--- where A, B, C are rectangular matrices, op(X) can be X or X^T,
//--- alpha and beta are scalars.
//--- This function:
//--- * can apply transposition and/or multiplication by scalar to operands
//--- * can use arbitrary part of matrices A/B (given by submatrix offset)
//--- * can store result into arbitrary part of C
//--- * for performance reasons requires C to be preallocated
//--- Parameters of this function are:
//--- * M, N, K - sizes of op1(A) (which is MxK), op2(B) (which
//--- is KxN) and C (which is MxN)
//--- * Alpha - coefficient before A*B
//--- * A, IA, JA - matrix A and offset of the submatrix
//--- * OpTypeA - transformation type:
//--- 0 - no transformation
//--- 1 - transposition
//--- * B, IB, JB - matrix B and offset of the submatrix
//--- * OpTypeB - transformation type:
//--- 0 - no transformation
//--- 1 - transposition
//--- * Beta - coefficient before C
//--- * C, IC, JC - preallocated matrix C and offset of the submatrix
//--- Below we perform simple product C:=A*B (alpha=1, beta=0)
//--- IMPORTANT: this function works with preallocated C, which must be large
//--- enough to store multiplication result.
int m=2;
int n=2;
int k=2;
double alpha=1.0;
int ia=0;
int ja=0;
int optypea=0;
int ib=0;
int jb=0;
int optypeb=0;
double beta=0.0;
int ic=0;
int jc=0;
CAlglib::RMatrixGemm(m,n,k,alpha,a,ia,ja,optypea,b,ib,jb,optypeb,beta,c,ic,jc);
{
matrix<double> check={{4.0,3.0},{2.0,4.0}};
CMatrixDouble Check=check;
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,Check,0.0001);
}
//--- Now we try to apply some simple transformation to operands: C:=A*B^T
optypeb=1;
CAlglib::RMatrixGemm(m,n,k,alpha,a,ia,ja,optypea,b,ib,jb,optypeb,beta,c,ic,jc);
{
matrix<double> check={{5,1},{5,3}};
CMatrixDouble Check=check;
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,Check,0.0001);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Symmetric rank-K update (single-threaded) |
//+------------------------------------------------------------------+
void TEST_Ablas_D_Syrk(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
_spoil_scenario=-1;
//--- rmatrixsyrk() function allows us to calculate symmetric rank-K update
//--- C := beta*C + alpha*A'*A, where C is square N*N matrix, A is square K*N
//--- matrix, alpha and beta are scalars. It is also possible to update by
//--- adding A*A' instead of A'*A.
//--- Parameters of this function are:
//--- * N, K - matrix size
//--- * Alpha - coefficient before A
//--- * A, IA, JA - matrix and submatrix offsets
//--- * OpTypeA - multiplication type:
//--- * 0 - A*A^T is calculated
//--- * 2 - A^T*A is calculated
//--- * Beta - coefficient before C
//--- * C, IC, JC - preallocated input/output matrix and submatrix offsets
//--- * IsUpper - whether upper or lower triangle of C is updated;
//--- this function updates only one half of C, leaving
//--- other half unchanged (not referenced at all).
//--- Below we will show how to calculate simple product C:=A'*A
//--- NOTE: beta=0 and we do not use previous value of C, but still it
//--- MUST be preallocated.
int n=2;
int k=1;
double alpha=1.0;
int ia=0;
int ja=0;
int optypea=2;
double beta=0.0;
int ic=0;
int jc=0;
bool isupper=true;
CMatrixDouble a;
{
matrix<double> init={{1,2}};
a=init;
}
//--- preallocate space to store result
CMatrixDouble c=matrix<double>::Zeros(2,2);
//--- calculate product, store result into upper part of c
CAlglib::RMatrixSyrk(n,k,alpha,a,ia,ja,optypea,beta,c,ic,jc,isupper);
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
{
//--- output result.
//--- IMPORTANT: lower triangle of C was NOT updated!
matrix<double> check={{1,2},{0,4}};
CMatrixDouble Check=check;
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,Check,0.0001);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Basis test for complex matrix functions (correctness and presence|
//| of SMP support) |
//+------------------------------------------------------------------+
void TEST_Ablas_T_Complex(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
_spoil_scenario=-1;
CMatrixComplex a;
CMatrixComplex b;
CMatrixComplex c;
//--- test cmatrixgemm()
{
matrix<complex> init={{(0+2i),(0+1i)},{(1+0i),(3+0i)}};
a=init;
}
{
matrix<complex> init={{(2+0i),(1+0i)},{(0+0i),(1+0i)}};
b=init;
}
c=matrix<complex>::Full(2,2,0);
CAlglib::CMatrixGemm(2,2,2,(complex)(1.0),a,0,0,0,b,0,0,0,(complex)0.0,c,0,0);
if(Func_spoil_scenario(_spoil_scenario,_TestResult))
{
matrix<complex> check={{(0+4i),(0+3i)},{(2+0i),(4+0i)}};
CMatrixComplex Check=check;
_TestResult=_TestResult && Doc_Test_Complex_Matrix(c,Check,0.0001);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Basic operations with sparse matrices |
//+------------------------------------------------------------------+
void TEST_Sparse_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<1; _spoil_scenario++)
{
//--- This example demonstrates creation/initialization of the sparse matrix
//--- and matrix-vector multiplication.
//--- First, we have to create matrix and initialize it. Matrix is initially created
//--- in the Hash-Table format, which allows convenient initialization. We can modify
//--- Hash-Table matrix with SparseSet() and sparseadd() functions.
//--- NOTE: Unlike CRS format, Hash-Table representation allows you to initialize
//--- elements in the arbitrary order. You may see that we initialize a[0][0] first,
//--- then move to the second row, and then move back to the first row.
CSparseMatrix s;
CAlglib::SparseCreate(2,2,s);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,0,0,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,1,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,0,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseAdd(s,1,1,4.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now S is equal to
//--- [ 2 1 ]
//--- [ 5 ]
//--- Lets check it by reading matrix contents with SparseGet().
//--- You may see that with SparseGet() you may read both non-zero
//--- and zero elements.
double v;
v=CAlglib::SparseGet(s,0,0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.0000,0.005);
v=CAlglib::SparseGet(s,0,1);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.0000,0.005);
v=CAlglib::SparseGet(s,1,0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.0000,0.005);
v=CAlglib::SparseGet(s,1,1);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,5.0000,0.005);
//--- After successful creation we can use our matrix for linear operations.
//--- However, there is one more thing we MUST do before using S in linear
//--- operations: we have to convert it from HashTable representation (used for
//--- initialization and dynamic operations) to CRS format with sparseconverttocrs()
//--- call. If you omit this call, ALGLIB will generate exception on the first
//--- attempt to use S in linear operations.
CAlglib::SparseConvertToCRS(s);
//--- Now S is in the CRS format and we are ready to do linear operations.
//--- Lets calculate A*x for some x.
CRowDouble x;
{
vector<double> init={1,-1};
x=init;
}
if(_spoil_scenario==0)
Spoil_Vector_By_Deleting_Element(x);
CRowDouble y;
CAlglib::SparseMV(s,x,y);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.000,-5.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Advanced topic: creation in the CRS format. |
//+------------------------------------------------------------------+
void TEST_Sparse_D_CRS(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<2; _spoil_scenario++)
{
//--- This example demonstrates creation/initialization of the sparse matrix in the
//--- CRS format.
//--- Hash-Table format used by default is very convenient (it allows easy
//--- insertion of elements, automatic memory reallocation), but has
//--- significant memory and performance overhead. Insertion of one element
//--- costs hundreds of CPU cycles, and memory consumption is several times
//--- higher than that of CRS.
//--- When you work with really large matrices and when you can tell in
//--- advance how many elements EXACTLY you need, it can be beneficial to
//--- create matrix in the CRS format from the very beginning.
//--- If you want to create matrix in the CRS format, you should:
//--- * use sparsecreatecrs() function
//--- * know row sizes in advance (number of non-zero entries in the each row)
//--- * initialize matrix with SparseSet() - another function, sparseadd(), is not allowed
//--- * initialize elements from left to right, from top to bottom, each
//--- element is initialized only once.
CSparseMatrix s;
CRowInt row_sizes;
{
int init[]={2,2,2,1};
row_sizes=init;
}
if(_spoil_scenario==0)
Spoil_Vector_By_Deleting_Element(row_sizes);
CAlglib::SparseCreateCRS(4,4,row_sizes,s);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,0,0,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,0,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,1,1,4.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,1,2,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,2,2,3.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,2,3,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(s,3,3,9.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now S is equal to
//--- [ 2 1 ]
//--- [ 4 2 ]
//--- [ 3 1 ]
//--- [ 9 ]
//--- We should point that we have initialized S elements from left to right,
//--- from top to bottom. CRS representation does NOT allow you to do so in
//--- the different order. Try to change order of the SparseSet() calls above,
//--- and you will see that your program generates exception.
//--- We can check it by reading matrix contents with SparseGet().
//--- However, you should remember that SparseGet() is inefficient on
//--- CRS matrices (it may have to pass through all elements of the row
//--- until it finds element you need).
double v=CAlglib::SparseGet(s,0,0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.0000,0.005);
v=CAlglib::SparseGet(s,2,3);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.0000,0.005);
//--- you may see that you can read zero elements (which are not stored) with SparseGet()
v=CAlglib::SparseGet(s,3,2);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.0000,0.005);
//--- After successful creation we can use our matrix for linear operations.
//--- Lets calculate A*x for some x.
CRowDouble x;
{
double init[]={1,-1,1,-1};
x=init;
}
if(_spoil_scenario==1)
Spoil_Vector_By_Deleting_Element(x);
CRowDouble y;
CAlglib::SparseMV(s,x,y);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.000,-2.000,2.000,-9};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Solving positive definite sparse system using Skyline(SKS) solver| |
//+------------------------------------------------------------------+
void TEST_SolveSKS_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<4; _spoil_scenario++)
{
//--- This example demonstrates creation/initialization of the sparse matrix
//--- in the SKS (Skyline) storage format and solution using SKS-based direct
//--- solver.
//--- First, we have to create matrix and initialize it. Matrix is created
//--- in the SKS format, using fixed bandwidth initialization function.
//--- Several points should be noted:
//--- 1. SKS sparse storage format also allows variable bandwidth matrices;
//--- we just do not want to overcomplicate this example.
//--- 2. SKS format requires you to specify matrix geometry prior to
//--- initialization of its elements with SparseSet(). If you specified
//--- bandwidth=1, you can not change your mind afterwards and call
//--- SparseSet() for non-existent elements.
//--- 3. Because SKS solver need just one triangle of SPD matrix, we can
//--- omit initialization of the lower triangle of our matrix.
int n=4;
int bandwidth=1;
CSparseMatrix s;
CAlglib::SparseCreateSKSBand(n,n,bandwidth,s);
CAlglib::SparseSet(s,0,0,2.0);
CAlglib::SparseSet(s,0,1,1.0);
CAlglib::SparseSet(s,1,1,3.0);
CAlglib::SparseSet(s,1,2,1.0);
CAlglib::SparseSet(s,2,2,3.0);
CAlglib::SparseSet(s,2,3,1.0);
CAlglib::SparseSet(s,3,3,2.0);
//--- Now we have symmetric positive definite 4x4 system width bandwidth=1:
//--- [ 2 1 ] [ x0]] [ 4 ]
//--- [ 1 3 1 ] [ x1 ] [ 10 ]
//--- [ 1 3 1 ] * [ x2 ] = [ 15 ]
//--- [ 1 2 ] [ x3 ] [ 11 ]
//--- After successful creation we can call SKS solver.
CRowDouble b;
{
double init[]={4,10,15,11};
b=init;
}
if(_spoil_scenario==0)
Spoil_Vector_By_Value(b,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(b,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(b,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(b);
CSparseSolverReport rep;
CRowDouble x;
bool isuppertriangle=true;
CAlglib::SparseSPDSolveSKS(s,isuppertriangle,b,x,rep);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.0000,2.0000,3.0000,4.0000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Solution of sparse linear systems with CG |
//+------------------------------------------------------------------+
void TEST_LinCG_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<4; _spoil_scenario++)
{
//--- This example illustrates solution of sparse linear systems with
//--- conjugate gradient method.
//--- Suppose that we have linear system A*x=b with sparse symmetric
//--- positive definite A (represented by SparseMatrix object)
//--- [ 5 1 ]
//--- [ 1 7 2 ]
//--- A = [ 2 8 1 ]
//--- [ 1 4 1 ]
//--- [ 1 4 ]
//--- and right part b
//--- [ 7 ]
//--- [ 17 ]
//--- b = [ 14 ]
//--- [ 10 ]
//--- [ 6 ]
//--- and we want to solve this system using sparse linear CG. In order
//--- to do so, we have to create left part (SparseMatrix object) and
//--- right part (dense array).
//--- Initially, sparse matrix is created in the Hash-Table format,
//--- which allows easy initialization, but do not allow matrix to be
//--- used in the linear solvers. So after construction you should convert
//--- sparse matrix to CRS format (one suited for linear operations).
//--- It is important to note that in our example we initialize full
//--- matrix A, both lower and upper triangles. However, it is symmetric
//--- and sparse solver needs just one half of the matrix. So you may
//--- save about half of the space by filling only one of the triangles.
CSparseMatrix a;
CAlglib::SparseCreate(5,5,a);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,0,0,5.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,0,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,0,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,1,7.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,2,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,2,1,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,2,2,8.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,2,3,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,3,2,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,3,3,4.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,3,4,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,4,3,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,4,4,4.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now our matrix is fully initialized, but we have to do one more
//--- step - convert it from Hash-Table format to CRS format (see
//--- documentation on sparse matrices for more information about these
//--- formats).
//--- If you omit this call, ALGLIB will generate exception on the first
//--- attempt to use A in linear operations.
CAlglib::SparseConvertToCRS(a);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Initialization of the right part
CRowDouble b;
{
double init[]={7,17,14,10,6};
b=init;
}
if(_spoil_scenario==0)
Spoil_Vector_By_Value(b,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(b,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(b,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(b);
//--- Now we have to create linear solver object and to use it for the
//--- solution of the linear system.
//--- NOTE: lincgsolvesparse() accepts additional parameter which tells
//--- what triangle of the symmetric matrix should be used - upper
//--- or lower. Because we've filled both parts of the matrix, we
//--- can use any part - upper or lower.
CLinCGState s;
CLinCGReport rep;
CRowDouble x;
CAlglib::LinCGCreate(5,s);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::LinCGSolveSparse(s,a,true,b);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::LinCGResult(s,x,rep);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
double check[]={1.000,2.000,1.000,2.000,1.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Solution of sparse linear systems with CG |
//+------------------------------------------------------------------+
void TEST_LinLSQR_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<4; _spoil_scenario++)
{
//--- This example illustrates solution of sparse linear least squares problem
//--- with LSQR algorithm.
//--- Suppose that we have least squares problem min|A*x-b| with sparse A
//--- represented by SparseMatrix object
//--- [ 1 1 ]
//--- [ 1 1 ]
//--- A = [ 2 1 ]
//--- [ 1 ]
//--- [ 1 ]
//--- and right part b
//--- [ 4 ]
//--- [ 2 ]
//--- b = [ 4 ]
//--- [ 1 ]
//--- [ 2 ]
//--- and we want to solve this system in the least squares sense using
//--- LSQR algorithm. In order to do so, we have to create left part
//--- (SparseMatrix object) and right part (dense array).
//--- Initially, sparse matrix is created in the Hash-Table format,
//--- which allows easy initialization, but do not allow matrix to be
//--- used in the linear solvers. So after construction you should convert
//--- sparse matrix to CRS format (one suited for linear operations).
CSparseMatrix a;
CAlglib::SparseCreate(5,2,a);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,0,0,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,0,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,0,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,2,0,2.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,2,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,3,0,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,4,1,1.0);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now our matrix is fully initialized, but we have to do one more
//--- step - convert it from Hash-Table format to CRS format (see
//--- documentation on sparse matrices for more information about these
//--- formats).
//--- If you omit this call, ALGLIB will generate exception on the first
//--- attempt to use A in linear operations.
CAlglib::SparseConvertToCRS(a);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Initialization of the right part
CRowDouble b;
{
double init[]={4,2,4,1,2};
b=init;
}
if(_spoil_scenario==0)
Spoil_Vector_By_Value(b,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(b,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(b,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(b);
//--- Now we have to create linear solver object and to use it for the
//--- solution of the linear system.
CLinLSQRState s;
CLinLSQRReport rep;
CRowDouble x;
CAlglib::LinLSQRCreate(5,2,s);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::LinLSQRSolveSparse(s,a,b);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::LinLSQRResults(s,x,rep);
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,4);
double check[]={1.000,2.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Linearly constrained dense quadratic programming |
//+------------------------------------------------------------------+
void TEST_MinQP_D_LC1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<16; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1) = x0^2 + x1^2 -6*x0 - 4*x1
//--- subject to linear constraint x0+x1<=2
//--- Exact solution is [x0,x1] = [1.5,0.5]
//--- IMPORTANT: this solver minimizes following function:
//--- f(x) = 0.5*x'*A*x + b'*x.
//--- Note that quadratic term has 0.5 before it. So if you want to minimize
//--- quadratic function, you should rewrite it in such way that quadratic term
//--- is multiplied by 0.5 too.
//--- For example, our function is f(x)=x0^2+x1^2+..., but we rewrite it as
//--- f(x) = 0.5*(2*x0^2+2*x1^2) + ....
//--- and pass diag(2,2) as quadratic term - NOT diag(1,1)!
matrix<double> A={{2,0},{0,2}};
CMatrixDouble a=A;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(a);
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(a);
double b[];
{
double init[]={-6,-4};
ArrayCopy(b,init);
}
if(_spoil_scenario==5)
Spoil_Vector_By_Value(b,AL_NaN);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(b,AL_POSINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(b,AL_NEGINF);
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(b);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Value(s,AL_NEGINF);
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(s);
matrix<double> C={{1.0,1.0,2.0}};
CMatrixDouble c=C;
if(_spoil_scenario==13)
Spoil_Matrix_By_Value(c,AL_NaN);
if(_spoil_scenario==14)
Spoil_Matrix_By_Value(c,AL_POSINF);
if(_spoil_scenario==15)
Spoil_Matrix_By_Value(c,AL_NEGINF);
int Ct[]={-1};
CRowInt ct=Ct;
double x[];
CMinQPStateShell state;
CMinQPReportShell rep;
//--- create solver, set quadratic/linear terms
CAlglib::MinQPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetQuadraticTerm(state,a);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetLinearTerm(state,b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetLC(state,c,ct);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set scale of the parameters.
//--- It is strongly recommended that you set scale of your variables.
//--- Knowing their scales is essential for evaluation of stopping criteria
//--- and for preconditioning of the algorithm steps.
//--- You can find more information on scaling at http://www.CAlglib::net/optimization/scaling.php
//--- NOTE: for convex problems you may try using minqpsetscaleautodiag()
//--- which automatically determines variable scales.
CAlglib::MinQPSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Solve problem with BLEIC-based QP solver.
//--- This solver is intended for problems with moderate (up to 50) number
//--- of general linear constraints and unlimited number of box constraints.
//--- Default stopping criteria are used.
CAlglib::MinQPSetAlgoBLEIC(state,0.0,0.0,0.0,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={1.500,0.500};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.05);
}
//--- Solve problem with DENSE-AUL solver.
//--- This solver is optimized for problems with up to several thousands of
//--- variables and large amount of general linear constraints. Problems with
//--- less than 50 general linear constraints can be efficiently solved with
//--- BLEIC, problems with box-only constraints can be solved with QuickQP.
//--- However, DENSE-AUL will work in any (including unconstrained) case.
//--- Default stopping criteria are used.
CAlglib::MinQPSetAlgoDenseAUL(state,1.0e-9,1.0e+4,5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={1.500,0.500};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.05);
}
//--- Solve problem with QuickQP solver.
//--- This solver is intended for medium and large-scale problems with box
//--- constraints, and...
//--- ...Oops! It does not support general linear constraints, -5 returned as completion code!
CAlglib::MinQPSetAlgoQuickQP(state,0.0,0.0,0.0,0,true);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),-5);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unconstrained sparse quadratic programming |
//+------------------------------------------------------------------+
void TEST_MinQP_D_U2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- This example demonstrates minimization of F(x0,x1) = x0^2 + x1^2 -6*x0 - 4*x1,
//--- with quadratic term given by sparse matrix structure.
//--- Exact solution is [x0,x1] = [3,2]
//--- We provide algorithm with starting point, although in this case
//--- (dense matrix, no constraints) it can work without such information.
//--- IMPORTANT: this solver minimizes following function:
//--- f(x) = 0.5*x'*A*x + b'*x.
//--- Note that quadratic term has 0.5 before it. So if you want to minimize
//--- quadratic function, you should rewrite it in such way that quadratic term
//--- is multiplied by 0.5 too.
//--- For example, our function is f(x)=x0^2+x1^2+..., but we rewrite it as
//--- f(x) = 0.5*(2*x0^2+2*x1^2) + ....
//--- and pass diag(2,2) as quadratic term - NOT diag(1,1)!
CSparseMatrix a;
double b[];
{
double init[]={-6,-4};
ArrayCopy(b,init);
}
if(_spoil_scenario==0)
Spoil_Vector_By_Value(b,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(b,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(b,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(b);
double x0[];
{
double init[]={0,1};
ArrayCopy(x0,init);
}
if(_spoil_scenario==4)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x0,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(x0);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==8)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(s,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(s);
double x[];
CMinQPStateShell state;
CMinQPReportShell rep;
//--- initialize sparsematrix structure
CAlglib::SparseCreate(2,2,0,a);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,0,0,2.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SparseSet(a,1,1,2.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- create solver, set quadratic/linear terms
CAlglib::MinQPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetQuadraticTermSparse(state,a,true);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetLinearTerm(state,b);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetStartingPoint(state,x0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set scale of the parameters.
//--- It is strongly recommended that you set scale of your variables.
//--- Knowing their scales is essential for evaluation of stopping criteria
//--- and for preconditioning of the algorithm steps.
//--- You can find more information on scaling at http://www.CAlglib::net/optimization/scaling.php
//--- NOTE: for convex problems you may try using minqpsetscaleautodiag()
//--- which automatically determines variable scales.
CAlglib::MinQPSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Solve problem with BLEIC-based QP solver.
//--- This solver is intended for problems with moderate (up to 50) number
//--- of general linear constraints and unlimited number of box constraints.
//--- It also supports sparse problems.
//--- Default stopping criteria are used.
CAlglib::MinQPSetAlgoBLEIC(state,0.0,0.0,0.0,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={3,2};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonconvex quadratic programming |
//+------------------------------------------------------------------+
void TEST_MinQP_D_NonConvex(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<21; _spoil_scenario++)
{
//--- This example demonstrates minimization of nonconvex function
//--- F(x0,x1) = -(x0^2+x1^2)
//--- subject to constraints x0,x1 in [1.0,2.0]
//--- Exact solution is [x0,x1] = [2,2].
//--- Non-convex problems are harded to solve than convex ones, and they
//--- may have more than one local minimum. However, ALGLIB solves may deal
//--- with such problems (altough they do not guarantee convergence to
//--- global minimum).
//--- IMPORTANT: this solver minimizes following function:
//--- f(x) = 0.5*x'*A*x + b'*x.
//--- Note that quadratic term has 0.5 before it. So if you want to minimize
//--- quadratic function, you should rewrite it in such way that quadratic term
//--- is multiplied by 0.5 too.
//--- For example, our function is f(x)=-(x0^2+x1^2), but we rewrite it as
//--- f(x) = 0.5*(-2*x0^2-2*x1^2)
//--- and pass diag(-2,-2) as quadratic term - NOT diag(-1,-1)!
matrix<double> A={{-2,0},{0,-2}};
CMatrixDouble a=A;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(a,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(a,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(a);
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(a);
double x0[];
{
double init[]={1,1};
ArrayCopy(x0,init);
}
if(_spoil_scenario==5)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(x0,AL_NEGINF);
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(x0);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Value(s,AL_NEGINF);
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(s);
double bndl[];
{
double init[]={1.0,1.0};
ArrayCopy(bndl,init);
}
if(_spoil_scenario==13)
Spoil_Vector_By_Value(bndl,AL_NaN);
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(bndl);
double bndu[];
{
double init[]={2.0,2.0};
ArrayCopy(bndu,init);
}
if(_spoil_scenario==15)
Spoil_Vector_By_Value(bndu,AL_NaN);
if(_spoil_scenario==16)
Spoil_Vector_By_Deleting_Element(bndu);
double x[];
CMinQPStateShell state;
CMinQPReportShell rep;
//--- create solver, set quadratic/linear terms, constraints
CAlglib::MinQPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetQuadraticTerm(state,a);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetStartingPoint(state,x0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set scale of the parameters.
//--- It is strongly recommended that you set scale of your variables.
//--- Knowing their scales is essential for evaluation of stopping criteria
//--- and for preconditioning of the algorithm steps.
//--- You can find more information on scaling at http://www.CAlglib::net/optimization/scaling.php
//--- NOTE: there also exists minqpsetscaleautodiag() function
//--- which automatically determines variable scales; however,
//--- it does NOT work for non-convex problems.
CAlglib::MinQPSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Solve problem with BLEIC-based QP solver.
//--- This solver is intended for problems with moderate (up to 50) number
//--- of general linear constraints and unlimited number of box constraints.
//--- It may solve non-convex problems as long as they are bounded from
//--- below under constraints.
//--- Default stopping criteria are used.
CAlglib::MinQPSetAlgoBLEIC(state,0.0,0.0,0.0,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={2,2};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
//--- Solve problem with DENSE-AUL solver.
//--- This solver is optimized for problems with up to several thousands of
//--- variables and large amount of general linear constraints. Problems with
//--- less than 50 general linear constraints can be efficiently solved with
//--- BLEIC, problems with box-only constraints can be solved with QuickQP.
//--- However, DENSE-AUL will work in any (including unconstrained) case.
//--- Algorithm convergence is guaranteed only for convex case, but you may
//--- expect that it will work for non-convex problems too (because near the
//--- solution they are locally convex).
//--- Default stopping criteria are used.
CAlglib::MinQPSetAlgoDenseAUL(state,1.0e-9,1.0e+4,5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
//--- Hmm... this problem is bounded from below (has solution) only under constraints.
//--- What it we remove them?
//--- You may see that BLEIC algorithm detects unboundedness of the problem,
//--- -4 is returned as completion code. However, DENSE-AUL is unable to detect
//--- such situation and it will cycle forever (we do not test it here).
double nobndl[];
{
double init[]={-AL_POSINF,-AL_POSINF};
ArrayCopy(nobndl,init);
}
if(_spoil_scenario==17)
Spoil_Vector_By_Value(nobndl,AL_NaN);
if(_spoil_scenario==18)
Spoil_Vector_By_Deleting_Element(nobndl);
double nobndu[];
{
double init[]={AL_POSINF,+AL_POSINF};
ArrayCopy(nobndu,init);
}
if(_spoil_scenario==19)
Spoil_Vector_By_Value(nobndu,AL_NaN);
if(_spoil_scenario==20)
Spoil_Vector_By_Deleting_Element(nobndu);
CAlglib::MinQPSetBC(state,nobndl,nobndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPSetAlgoBLEIC(state,0.0,0.0,0.0,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinQPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.GetTerminationType(),-4);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Basic linear programming example |
//+------------------------------------------------------------------+
void TEST_MinLP_Basic(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<15; _spoil_scenario++)
{
//--- This example demonstrates how to minimize
//--- F(x0,x1) = -0.1*x0 - x1
//--- subject to box constraints
//--- -1 <= x0,x1 <= +1
//--- and general linear constraints
//--- x0 - x1 >= -1
//--- x0 + x1 <= 1
//--- We use dual simplex solver provided by ALGLIB for this task. Box
//--- constraints are specified by means of constraint vectors bndl and
//--- bndu (we have bndl<=x<=bndu). General linear constraints are
//--- specified as AL<=A*x<=AU, with AL/AU being 2x1 vectors and A being
//--- 2x2 matrix.
//--- NOTE: some/all components of AL/AU can be +-INF, same applies to
//--- bndl/bndu. You can also have AL[I]=AU[i] (as well as
//--- BndL[i]=BndU[i]).
matrix<double> A={{1,-1},{1,+1}};
CMatrixDouble a=A;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(a,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Deleting_Row(a);
if(_spoil_scenario==2)
Spoil_Matrix_By_Deleting_Col(a);
double Al[]={-1,-AL_POSINF};
CRowDouble al=Al;
if(_spoil_scenario==3)
Spoil_Vector_By_Value(al,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(al);
double Au[]={AL_POSINF,+1};
CRowDouble au=Au;
if(_spoil_scenario==5)
Spoil_Vector_By_Value(au,AL_NaN);
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(au);
double C[]={-0.1,-1};
CRowDouble c=C;
if(_spoil_scenario==7)
Spoil_Vector_By_Value(c,AL_NaN);
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(c);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==10)
Spoil_Vector_By_Deleting_Element(s);
CRowDouble bndl=vector<double>::Full(2,-1);
if(_spoil_scenario==11)
Spoil_Vector_By_Value(bndl,AL_NaN);
if(_spoil_scenario==12)
Spoil_Vector_By_Deleting_Element(bndl);
CRowDouble bndu=vector<double>::Ones(2);
if(_spoil_scenario==13)
Spoil_Vector_By_Value(bndu,AL_NaN);
if(_spoil_scenario==14)
Spoil_Vector_By_Deleting_Element(bndu);
CRowDouble x;
CMinLPState state;
CMinLPReport rep;
CAlglib::MinLPCreate(2,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set cost vector, box constraints, general linear constraints.
//--- Box constraints can be set in one call to minlpsetbc() or minlpsetbcall()
//--- (latter sets same constraints for all variables and accepts two scalars
//--- instead of two vectors).
//--- General linear constraints can be specified in several ways:
//--- * minlpsetlc2dense() - accepts dense 2D array as input; sometimes this
//--- approach is more convenient, although less memory-efficient.
//--- * minlpsetlc2() - accepts sparse matrix as input
//--- * minlpaddlc2dense() - appends one row to the current set of constraints;
//--- row being appended is specified as dense vector
//--- * minlpaddlc2() - appends one row to the current set of constraints;
//--- row being appended is specified as sparse set of elements
//--- Independently from specific function being used, LP solver uses sparse
//--- storage format for internal representation of constraints.
CAlglib::MinLPSetCost(state,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinLPSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinLPSetLC2Dense(state,a,al,au,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set scale of the parameters.
//--- It is strongly recommended that you set scale of your variables.
//--- Knowing their scales is essential for evaluation of stopping criteria
//--- and for preconditioning of the algorithm steps.
//--- You can find more information on scaling at http://www.CAlglib::net/optimization/scaling.php
CAlglib::MinLPSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Solve
CAlglib::MinLPOptimize(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinLPResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0,1};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.0005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinearly constrained optimization (inequality constraints) |
//+------------------------------------------------------------------+
void TEST_MinNLC_D_Inequality(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NLCFunc1_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = -x0+x1
//--- subject to box constraints
//--- x0>=0, x1>=0
//--- and nonlinear inequality constraint
//--- x0^2 + x1^2 - 1 <= 0
CRowDouble x0=vector<double>::Zeros(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.000001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
int maxits=0;
CRowDouble bndl=vector<double>::Zeros(2);
CRowDouble bndu=vector<double>::Full(2,AL_POSINF);
CMinNLCState state;
//--- Create optimizer object and tune its settings:
//--- * epsx=0.000001 stopping condition for inner iterations
//--- * s=[1,1] all variables have unit scale; it is important to
//--- tell optimizer about scales of your variables - it
//--- greatly accelerates convergence and helps to perform
//--- some important integrity checks.
CAlglib::MinNLCCreate(2,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Choose one of the nonlinear programming solvers supported by minnlc
//--- optimizer:
//--- * SQP - sequential quadratic programming NLP solver
//--- * AUL - augmented Lagrangian NLP solver
//--- * SLP - successive linear programming NLP solver
//--- Different solvers have different properties:
//--- * SQP needs less function evaluations than any other solver, but it
//--- has much higher iteration cost than other solvers (a QP subproblem
//--- has to be solved during each step)
//--- * AUL solver has cheaper iterations, but needs more target function
//--- evaluations
//--- * SLP is the most robust solver provided by ALGLIB, but it performs
//--- order of magnitude more iterations than SQP.
//--- In the code below we set solver to be AUL but then override it with SLP,
//--- and then with SQP, so the effective choice is to use SLP. We recommend
//--- you to use SQP at least for early prototyping stages, and then switch
//--- to AUL if possible.
double rho=1000.0;
int outerits=5;
CAlglib::MinNLCSetAlgoAUL(state,rho,outerits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetAlgoSLP(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetAlgoSQP(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set constraints:
//--- 1. boundary constraints are passed with minnlcsetbc() call
//--- 2. nonlinear constraints are more tricky-you can not "pack" general
//--- nonlinear function into double precision array. That's why
//--- MinNLCSetNLC() does not accept constraints itself - only constraint
//--- counts are passed: first parameter is number of equality constraints,
//--- second one is number of inequality constraints.
//--- As for constraining functions - these functions are passed as part
//--- of problem Jacobian (see below).
//--- NOTE: MinNLC optimizer supports arbitrary combination of boundary, general
//--- linear and general nonlinear constraints. This example does not
//--- show how to work with general linear constraints, but you can
//--- easily find it in documentation on minnlcsetlc() function.
CAlglib::MinNLCSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetNLC(state,0,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Activate OptGuard integrity checking.
//--- OptGuard monitor helps to catch common coding and problem statement
//--- issues, like:
//--- * discontinuity of the target/constraints (C0 continuity violation)
//--- * nonsmoothness of the target/constraints (C1 continuity violation)
//--- * erroneous analytic Jacobian, i.e. one inconsistent with actual
//--- change in the target/constraints
//--- OptGuard is essential for early prototyping stages because such
//--- problems often result in premature termination of the optimizer
//--- which is really hard to distinguish from the correct termination.
//--- IMPORTANT: GRADIENT VERIFICATION IS PERFORMED BY MEANS OF NUMERICAL
//--- DIFFERENTIATION, THUS DO NOT USE IT IN PRODUCTION CODE!
//--- Other OptGuard checks add moderate overhead, but anyway
//--- it is better to turn them off when they are not needed.
CAlglib::MinNLCOptGuardSmoothness(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCOptGuardGradient(state,0.001);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints.
//--- So, our vector function has form
//--- {f0,f1} = { -x0+x1 , x0^2+x1^2-1 }
//--- with Jacobian
//--- [ -1 +1 ]
//--- J = [ ]
//--- [ 2*x0 2*x1 ]
//--- with f0 being target function, f1 being constraining function. Number
//--- of equality/inequality constraints is specified by minnlcsetnlc(),
//--- with equality ones always being first, inequality ones being last.
CMinNLCReport rep;
CRowDouble x1;
CAlglib::MinNLCOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={1.0000,0.0000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,check,0.005);
}
//--- Check that OptGuard did not report errors
//--- NOTE: want to test OptGuard? Try breaking the Jacobian - say, add
//--- 1.0 to some of its components.
COptGuardReport ogrep;
CAlglib::MinNLCOptGuardResults(state,ogrep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_badgradsuspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc0suspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc1suspected,false);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinearly constrained optimization (equality constraints) |
//+------------------------------------------------------------------+
void TEST_MinNLC_D_Equality(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NLCFunc1_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
//CAp::TraceFile("IPM.DETAILED,SLP.DETAILED,SLP.PROBING,SQP.DETAILED,SQP.PROBING,AGS.DETAILED.SAMPLE,OPTGUARD.ALWAYS,OPTIMIZERS.X,DSS.DETAILED,RBF.DETAILED,SCHOLESKY.SS", "alglib_interfaces.trs");
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = -x0+x1
//--- subject to nonlinear equality constraint
//--- x0^2 + x1^2 - 1 = 0
CRowDouble x0=vector<double>::Zeros(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.000001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
int maxits=0;
CMinNLCState state;
//--- Create optimizer object and tune its settings:
//--- * epsx=0.000001 stopping condition for inner iterations
//--- * s=[1,1] all variables have unit scale
CAlglib::MinNLCCreate(2,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Choose one of the nonlinear programming solvers supported by minnlc
//--- optimizer:
//--- * SLP - successive linear programming NLP solver
//--- * AUL - augmented Lagrangian NLP solver
//--- Different solvers have different properties:
//--- * SLP is the most robust solver provided by ALGLIB: it can solve both
//--- convex and nonconvex optimization problems, it respects box and
//--- linear constraints (after you find feasible point it won't move away
//--- from the feasible area) and tries to respect nonlinear constraints
//--- as much as possible. It also usually needs less function evaluations
//--- to converge than AUL.
//--- However, it solves LP subproblems at each iterations which adds
//--- significant overhead to its running time. Sometimes it can be as much
//--- as 7x times slower than AUL.
//--- * AUL solver is less robust than SLP - it can violate box and linear
//--- constraints at any moment, and it is intended for convex optimization
//--- problems (although in many cases it can deal with nonconvex ones too).
//--- Also, unlike SLP it needs some tuning (penalty factor and number of
//--- outer iterations).
//--- However, it is often much faster than the current version of SLP.
//--- In the code below we set solver to be AUL but then override it with SLP,
//--- so the effective choice is to use SLP. We recommend you to use SLP at
//--- least for early prototyping stages.
//--- You can comment line with SLP if you want to solve your problem with
//--- AUL solver.
double rho=1000.0;
int outerits=5;
CAlglib::MinNLCSetAlgoAUL(state,rho,outerits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetAlgoSLP(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set constraints:
//--- Nonlinear constraints are tricky-you can not "pack" general
//--- nonlinear function into double precision array. That's why
//--- MinNLCSetNLC() does not accept constraints itself - only constraint
//--- counts are passed: first parameter is number of equality constraints,
//--- second one is number of inequality constraints.
//--- As for constraining functions - these functions are passed as part
//--- of problem Jacobian (see below).
//--- NOTE: MinNLC optimizer supports arbitrary combination of boundary, general
//--- linear and general nonlinear constraints. This example does not
//--- show how to work with general linear constraints, but you can
//--- easily find it in documentation on minnlcsetbc() and
//--- minnlcsetlc() functions.
CAlglib::MinNLCSetNLC(state,1,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Activate OptGuard integrity checking.
//--- OptGuard monitor helps to catch common coding and problem statement
//--- issues, like:
//--- * discontinuity of the target/constraints (C0 continuity violation)
//--- * nonsmoothness of the target/constraints (C1 continuity violation)
//--- * erroneous analytic Jacobian, i.e. one inconsistent with actual
//--- change in the target/constraints
//--- OptGuard is essential for early prototyping stages because such
//--- problems often result in premature termination of the optimizer
//--- which is really hard to distinguish from the correct termination.
//--- IMPORTANT: GRADIENT VERIFICATION IS PERFORMED BY MEANS OF NUMERICAL
//--- DIFFERENTIATION, THUS DO NOT USE IT IN PRODUCTION CODE!
//--- Other OptGuard checks add moderate overhead, but anyway
//--- it is better to turn them off when they are not needed.
CAlglib::MinNLCOptGuardSmoothness(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCOptGuardGradient(state,0.001);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints.
//--- So, our vector function has form
//--- {f0,f1} = { -x0+x1 , x0^2+x1^2-1 }
//--- with Jacobian
//--- [ -1 +1 ]
//--- J = [ ]
//--- [ 2*x0 2*x1 ]
//--- with f0 being target function, f1 being constraining function. Number
//--- of equality/inequality constraints is specified by minnlcsetnlc(),
//--- with equality ones always being first, inequality ones being last.
CMinNLCReport rep;
CRowDouble x1;
CAlglib::MinNLCOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={0.70710,-0.70710};
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,check,0.005);
}
//--- Check that OptGuard did not report errors
//--- NOTE: want to test OptGuard? Try breaking the Jacobian - say, add
//--- 1.0 to some of its components.
COptGuardReport ogrep;
CAlglib::MinNLCOptGuardResults(state,ogrep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_badgradsuspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc0suspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc1suspected,false);
_TestResult=_TestResult && (_spoil_scenario==-1);
//CAp::TraceDisable();
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
//CAp::TraceDisable();
}
//+------------------------------------------------------------------+
//| Nonlinearly constrained optimization with mixed equality/ |
//| inequality constraints |
//+------------------------------------------------------------------+
void TEST_MinNLC_D_Mixed(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NLCFunc2_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = x0+x1
//--- subject to nonlinear inequality constraint
//--- x0^2 + x1^2 - 1 <= 0
//--- and nonlinear equality constraint
//--- x2-exp(x0) = 0
CRowDouble x0=vector<double>::Zeros(3);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(3);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.000001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
int maxits=0;
CMinNLCState state;
CMinNLCReport rep;
CRowDouble x1;
//--- Create optimizer object and tune its settings:
//--- * epsx=0.000001 stopping condition for inner iterations
//--- * s=[1,1] all variables have unit scale
//--- * upper limit on step length is specified (to avoid probing locations where exp() is large)
CAlglib::MinNLCCreate(3,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetSTPMax(state,10.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Choose one of the nonlinear programming solvers supported by minnlc
//--- optimizer:
//--- * SLP - successive linear programming NLP solver
//--- * AUL - augmented Lagrangian NLP solver
//--- Different solvers have different properties:
//--- * SLP is the most robust solver provided by ALGLIB: it can solve both
//--- convex and nonconvex optimization problems, it respects box and
//--- linear constraints (after you find feasible point it won't move away
//--- from the feasible area) and tries to respect nonlinear constraints
//--- as much as possible. It also usually needs less function evaluations
//--- to converge than AUL.
//--- However, it solves LP subproblems at each iterations which adds
//--- significant overhead to its running time. Sometimes it can be as much
//--- as 7x times slower than AUL.
//--- * AUL solver is less robust than SLP - it can violate box and linear
//--- constraints at any moment, and it is intended for convex optimization
//--- problems (although in many cases it can deal with nonconvex ones too).
//--- Also, unlike SLP it needs some tuning (penalty factor and number of
//--- outer iterations).
//--- However, it is often much faster than the current version of SLP.
//--- In the code below we set solver to be AUL but then override it with SLP,
//--- so the effective choice is to use SLP. We recommend you to use SLP at
//--- least for early prototyping stages.
//--- You can comment line with SLP if you want to solve your problem with
//--- AUL solver.
double rho=1000.0;
int outerits=5;
CAlglib::MinNLCSetAlgoAUL(state,rho,outerits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCSetAlgoSLP(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set constraints:
//--- Nonlinear constraints are tricky-you can not "pack" general
//--- nonlinear function into double precision array. That's why
//--- minnlcsetnlc() does not accept constraints itself - only constraint
//--- counts are passed: first parameter is number of equality constraints,
//--- second one is number of inequality constraints.
//--- As for constraining functions - these functions are passed as part
//--- of problem Jacobian (see below).
//--- NOTE: MinNLC optimizer supports arbitrary combination of boundary, general
//--- linear and general nonlinear constraints. This example does not
//--- show how to work with boundary or general linear constraints, but you
//--- can easily find it in documentation on minnlcsetbc() and
//--- minnlcsetlc() functions.
CAlglib::MinNLCSetNLC(state,1,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Activate OptGuard integrity checking.
//--- OptGuard monitor helps to catch common coding and problem statement
//--- issues, like:
//--- * discontinuity of the target/constraints (C0 continuity violation)
//--- * nonsmoothness of the target/constraints (C1 continuity violation)
//--- * erroneous analytic Jacobian, i.e. one inconsistent with actual
//--- change in the target/constraints
//--- OptGuard is essential for early prototyping stages because such
//--- problems often result in premature termination of the optimizer
//--- which is really hard to distinguish from the correct termination.
//--- IMPORTANT: GRADIENT VERIFICATION IS PERFORMED BY MEANS OF NUMERICAL
//--- DIFFERENTIATION, THUS DO NOT USE IT IN PRODUCTION CODE!
//--- Other OptGuard checks add moderate overhead, but anyway
//--- it is better to turn them off when they are not needed.
CAlglib::MinNLCOptGuardSmoothness(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCOptGuardGradient(state,0.001);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints.
//--- So, our vector function has form
//--- {f0,f1,f2} = { x0+x1 , x2-exp(x0) , x0^2+x1^2-1 }
//--- with Jacobian
//--- [ +1 +1 0 ]
//--- J = [-exp(x0) 0 1 ]
//--- [ 2*x0 2*x1 0 ]
//--- with f0 being target function, f1 being equality constraint "f1=0",
//--- f2 being inequality constraint "f2<=0". Number of equality/inequality
//--- constraints is specified by minnlcsetnlc(), with equality ones always
//--- being first, inequality ones being last.
CAlglib::MinNLCOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNLCResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={-0.70710,-0.70710,0.49306};
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,check,0.005);
}
//--- Check that OptGuard did not report errors
//--- NOTE: want to test OptGuard? Try breaking the Jacobian - say, add
//--- 1.0 to some of its components.
COptGuardReport ogrep;
CAlglib::MinNLCOptGuardResults(state,ogrep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_badgradsuspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc0suspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc1suspected,false);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonsmooth unconstrained optimization |
//+------------------------------------------------------------------+
void TEST_MinNS_D_Unconstrained(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NSFunc1_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<15; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = 2*|x0|+|x1|
//--- using nonsmooth nonlinear optimizer.
CRowDouble x0=vector<double>::Ones(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.00001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
double radius=0.1;
if(_spoil_scenario==9)
radius=AL_NaN;
if(_spoil_scenario==10)
radius=AL_POSINF;
if(_spoil_scenario==11)
radius=AL_NEGINF;
double rho=0.0;
if(_spoil_scenario==12)
rho=AL_NaN;
if(_spoil_scenario==13)
rho=AL_POSINF;
if(_spoil_scenario==14)
rho=AL_NEGINF;
int maxits=0;
CMinNSState state;
CMinNSReport rep;
CRowDouble x1;
//--- Create optimizer object, choose AGS algorithm and tune its settings:
//--- * radius=0.1 good initial value; will be automatically decreased later.
//--- * rho=0.0 penalty coefficient for nonlinear constraints; can be zero
//--- because we do not have such constraints
//--- * epsx=0.000001 stopping conditions
//--- * s=[1,1] all variables have unit scale
CAlglib::MinNSCreate(2,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetAlgoAGS(state,radius,rho);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints
//--- (box/linear ones are passed separately by means of minnssetbc() and
//--- minnssetlc() calls).
//--- If you do not have nonlinear constraints (exactly our situation), then
//--- you will have one-component function vector and 1xN Jacobian matrix.
//--- So, our vector function has form
//--- {f0} = { 2*|x0|+|x1| }
//--- with Jacobian
//--- [ ]
//--- J = [ 2*sign(x0) sign(x1) ]
//--- [ ]
//--- NOTE: nonsmooth optimizer requires considerably more function
//--- evaluations than smooth solver - about 2N times more. Using
//--- numerical differentiation introduces additional (multiplicative)
//--- 2N speedup.
//--- It means that if smooth optimizer WITH user-supplied gradient
//--- needs 100 function evaluations to solve 50-dimensional problem,
//--- then AGS solver with user-supplied gradient will need about 10.000
//--- function evaluations, and with numerical gradient about 1.000.000
//--- function evaluations will be performed.
//--- NOTE: AGS solver used by us can handle nonsmooth and nonconvex
//--- optimization problems. It has convergence guarantees, i.e. it will
//--- converge to stationary point of the function after running for some
//--- time.
//--- However, it is important to remember that "stationary point" is not
//--- equal to "solution". If your problem is convex, everything is OK.
//--- But nonconvex optimization problems may have "flat spots" - large
//--- areas where gradient is exactly zero, but function value is far away
//--- from optimal. Such areas are stationary points too, and optimizer
//--- may be trapped here.
//--- "Flat spots" are nonsmooth equivalent of the saddle points, but with
//--- orders of magnitude worse properties - they may be quite large and
//--- hard to avoid. All nonsmooth optimizers are prone to this kind of the
//--- problem, because it is impossible to automatically distinguish "flat
//--- spot" from true solution.
//--- This note is here to warn you that you should be very careful when
//--- you solve nonsmooth optimization problems. Visual inspection of
//--- results is essential.
CAlglib::MinNSOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,vector<double>::Zeros(2),0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonsmooth unconstrained optimization with numerical |
//| differentiation |
//+------------------------------------------------------------------+
void TEST_MinNS_D_Diff(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NSFunc1_FVec FVec;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<18; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = 2*|x0|+|x1|
//--- using nonsmooth nonlinear optimizer with numerical
//--- differentiation provided by ALGLIB.
//--- NOTE: nonsmooth optimizer requires considerably more function
//--- evaluations than smooth solver - about 2N times more. Using
//--- numerical differentiation introduces additional (multiplicative)
//--- 2N speedup.
//--- It means that if smooth optimizer WITH user-supplied gradient
//--- needs 100 function evaluations to solve 50-dimensional problem,
//--- then AGS solver with user-supplied gradient will need about 10.000
//--- function evaluations, and with numerical gradient about 1.000.000
//--- function evaluations will be performed.
CRowDouble x0=vector<double>::Ones(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.00001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
double diffstep=0.000001;
if(_spoil_scenario==9)
diffstep=AL_NaN;
if(_spoil_scenario==10)
diffstep=AL_POSINF;
if(_spoil_scenario==11)
diffstep=AL_NEGINF;
double radius=0.1;
if(_spoil_scenario==12)
radius=AL_NaN;
if(_spoil_scenario==13)
radius=AL_POSINF;
if(_spoil_scenario==14)
radius=AL_NEGINF;
double rho=0.0;
if(_spoil_scenario==15)
rho=AL_NaN;
if(_spoil_scenario==16)
rho=AL_POSINF;
if(_spoil_scenario==17)
rho=AL_NEGINF;
int maxits=0;
CMinNSState state;
CMinNSReport rep;
CRowDouble x1;
//--- Create optimizer object, choose AGS algorithm and tune its settings:
//--- * radius=0.1 good initial value; will be automatically decreased later.
//--- * rho=0.0 penalty coefficient for nonlinear constraints; can be zero
//--- because we do not have such constraints
//--- * epsx=0.000001 stopping conditions
//--- * s=[1,1] all variables have unit scale
CAlglib::MinNSCreateF(2,x0,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetAlgoAGS(state,radius,rho);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function, with first component
//--- being target function, and next components being nonlinear equality
//--- and inequality constraints (box/linear ones are passed separately
//--- by means of minnssetbc() and minnssetlc() calls).
//--- If you do not have nonlinear constraints (exactly our situation), then
//--- you will have one-component function vector.
//--- So, our vector function has form
//--- {f0} = { 2*|x0|+|x1| }
CAlglib::MinNSOptimize(state,FVec,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,vector<double>::Zeros(2),0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void TEST_MinNS_D_BC(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NSFunc1_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<17; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = 2*|x0|+|x1|
//--- subject to box constraints
//--- 1 <= x0 < +INF
//--- -INF <= x1 < +INF
//--- using nonsmooth nonlinear optimizer.
CRowDouble x0=vector<double>::Ones(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
vector<double> Bndl={1,-AL_POSINF};
CRowDouble bndl=Bndl;
if(_spoil_scenario==6)
Spoil_Vector_By_Value(bndl,AL_NaN);
CRowDouble bndu=vector<double>::Full(2,AL_POSINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(bndu,AL_NaN);
double epsx=0.00001;
if(_spoil_scenario==8)
epsx=AL_NaN;
if(_spoil_scenario==9)
epsx=AL_POSINF;
if(_spoil_scenario==10)
epsx=AL_NEGINF;
double radius=0.1;
if(_spoil_scenario==11)
radius=AL_NaN;
if(_spoil_scenario==12)
radius=AL_POSINF;
if(_spoil_scenario==13)
radius=AL_NEGINF;
double rho=0.0;
if(_spoil_scenario==14)
rho=AL_NaN;
if(_spoil_scenario==15)
rho=AL_POSINF;
if(_spoil_scenario==16)
rho=AL_NEGINF;
int maxits=0;
CMinNSState state;
CMinNSReport rep;
CRowDouble x1;
//--- Create optimizer object, choose AGS algorithm and tune its settings:
//--- * radius=0.1 good initial value; will be automatically decreased later.
//--- * rho=0.0 penalty coefficient for nonlinear constraints; can be zero
//--- because we do not have such constraints
//--- * epsx=0.000001 stopping conditions
//--- * s=[1,1] all variables have unit scale
CAlglib::MinNSCreate(2,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetAlgoAGS(state,radius,rho);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set box constraints.
//--- General linear constraints are set in similar way (see comments on
//--- minnssetlc() function for more information).
//--- You may combine box, linear and nonlinear constraints in one optimization
//--- problem.
CAlglib::MinNSSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints
//--- (box/linear ones are passed separately by means of minnssetbc() and
//--- minnssetlc() calls).
//--- If you do not have nonlinear constraints (exactly our situation), then
//--- you will have one-component function vector and 1xN Jacobian matrix.
//--- So, our vector function has form
//--- {f0} = { 2*|x0|+|x1| }
//--- with Jacobian
//--- [ ]
//--- J = [ 2*sign(x0) sign(x1) ]
//--- [ ]
//--- NOTE: nonsmooth optimizer requires considerably more function
//--- evaluations than smooth solver - about 2N times more. Using
//--- numerical differentiation introduces additional (multiplicative)
//--- 2N speedup.
//--- It means that if smooth optimizer WITH user-supplied gradient
//--- needs 100 function evaluations to solve 50-dimensional problem,
//--- then AGS solver with user-supplied gradient will need about 10.000
//--- function evaluations, and with numerical gradient about 1.000.000
//--- function evaluations will be performed.
//--- NOTE: AGS solver used by us can handle nonsmooth and nonconvex
//--- optimization problems. It has convergence guarantees, i.e. it will
//--- converge to stationary point of the function after running for some
//--- time.
//--- However, it is important to remember that "stationary point" is not
//--- equal to "solution". If your problem is convex, everything is OK.
//--- But nonconvex optimization problems may have "flat spots" - large
//--- areas where gradient is exactly zero, but function value is far away
//--- from optimal. Such areas are stationary points too, and optimizer
//--- may be trapped here.
//--- "Flat spots" are nonsmooth equivalent of the saddle points, but with
//--- orders of magnitude worse properties - they may be quite large and
//--- hard to avoid. All nonsmooth optimizers are prone to this kind of the
//--- problem, because it is impossible to automatically distinguish "flat
//--- spot" from true solution.
//--- This note is here to warn you that you should be very careful when
//--- you solve nonsmooth optimization problems. Visual inspection of
//--- results is essential.
CAlglib::MinNSOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.0000,0.0000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonsmooth nonlinearly constrained optimization |
//+------------------------------------------------------------------+
void TEST_MinNS_D_NLC(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_NSFunc2_Jac Jac;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<15; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x0,x1) = 2*|x0|+|x1|
//--- subject to combination of equality and inequality constraints
//--- x0 = 1
//--- x1 >= -1
//--- using nonsmooth nonlinear optimizer. Although these constraints
//--- are linear, we treat them as general nonlinear ones in order to
//--- demonstrate nonlinearly constrained optimization setup.
CRowDouble x0=vector<double>::Ones(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
double epsx=0.00001;
if(_spoil_scenario==6)
epsx=AL_NaN;
if(_spoil_scenario==7)
epsx=AL_POSINF;
if(_spoil_scenario==8)
epsx=AL_NEGINF;
double radius=0.1;
if(_spoil_scenario==9)
radius=AL_NaN;
if(_spoil_scenario==10)
radius=AL_POSINF;
if(_spoil_scenario==11)
radius=AL_NEGINF;
double rho=50.0;
if(_spoil_scenario==12)
rho=AL_NaN;
if(_spoil_scenario==13)
rho=AL_POSINF;
if(_spoil_scenario==14)
rho=AL_NEGINF;
int maxits=0;
CMinNSState state;
CMinNSReport rep;
CRowDouble x1;
//--- Create optimizer object, choose AGS algorithm and tune its settings:
//--- * radius=0.1 good initial value; will be automatically decreased later.
//--- * rho=50.0 penalty coefficient for nonlinear constraints. It is your
//--- responsibility to choose good one - large enough that it
//--- enforces constraints, but small enough in order to avoid
//--- extreme slowdown due to ill-conditioning.
//--- * epsx=0.000001 stopping conditions
//--- * s=[1,1] all variables have unit scale
CAlglib::MinNSCreate(2,x0,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetAlgoAGS(state,radius,rho);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetCond(state,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Set general nonlinear constraints.
//--- This part is more tricky than working with box/linear constraints - you
//--- can not "pack" general nonlinear function into double precision array.
//--- That's why minnssetnlc() does not accept constraints itself - only
//--- constraint COUNTS are passed: first parameter is number of equality
//--- constraints, second one is number of inequality constraints.
//--- As for constraining functions - these functions are passed as part
//--- of problem Jacobian (see below).
//--- NOTE: MinNS optimizer supports arbitrary combination of boundary, general
//--- linear and general nonlinear constraints. This example does not
//--- show how to work with general linear constraints, but you can
//--- easily find it in documentation on minnlcsetlc() function.
CAlglib::MinNSSetNLC(state,1,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and test results.
//--- Optimizer object accepts vector function and its Jacobian, with first
//--- component (Jacobian row) being target function, and next components
//--- (Jacobian rows) being nonlinear equality and inequality constraints
//--- (box/linear ones are passed separately by means of minnssetbc() and
//--- minnssetlc() calls).
//--- Nonlinear equality constraints have form Gi(x)=0, inequality ones
//--- have form Hi(x)<=0, so we may have to "normalize" constraints prior
//--- to passing them to optimizer (right side is zero, constraints are
//--- sorted, multiplied by -1 when needed).
//--- So, our vector function has form
//--- {f0,f1,f2} = { 2*|x0|+|x1|, x0-1, -x1-1 }
//--- with Jacobian
//--- [ 2*sign(x0) sign(x1) ]
//--- J = [ 1 0 ]
//--- [ 0 -1 ]
//--- which means that we have optimization problem
//--- min{f0} subject to f1=0, f2<=0
//--- which is essentially same as
//--- min { 2*|x0|+|x1| } subject to x0=1, x1>=-1
//--- NOTE: AGS solver used by us can handle nonsmooth and nonconvex
//--- optimization problems. It has convergence guarantees, i.e. it will
//--- converge to stationary point of the function after running for some
//--- time.
//--- However, it is important to remember that "stationary point" is not
//--- equal to "solution". If your problem is convex, everything is OK.
//--- But nonconvex optimization problems may have "flat spots" - large
//--- areas where gradient is exactly zero, but function value is far away
//--- from optimal. Such areas are stationary points too, and optimizer
//--- may be trapped here.
//--- "Flat spots" are nonsmooth equivalent of the saddle points, but with
//--- orders of magnitude worse properties - they may be quite large and
//--- hard to avoid. All nonsmooth optimizers are prone to this kind of the
//--- problem, because it is impossible to automatically distinguish "flat
//--- spot" from true solution.
//--- This note is here to warn you that you should be very careful when
//--- you solve nonsmooth optimization problems. Visual inspection of
//--- results is essential.
CAlglib::MinNSOptimize(state,Jac,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinNSResults(state,x1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.0000,0.0000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x1,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Nonlinear optimization with box constraints |
//+------------------------------------------------------------------+
void TEST_MinBC_D_1(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_Grad1 Grad;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<20; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x,y) = 100*(x+3)^4+(y-3)^4
//--- subject to box constraints
//--- -1<=x<=+1, -1<=y<=+1
//--- using MinBC optimizer with:
//--- * initial point x=[0,0]
//--- * unit scale being set for all variables (see minbcsetscale for more info)
//---*stopping criteria set to "terminate after short enough step"
//--- * OptGuard integrity check being used to check problem statement
//--- for some common errors like nonsmoothness or bad analytic gradient
//--- First, we create optimizer object and tune its properties:
//--- * set box constraints
//--- * set variable scales
//--- * set stopping criteria
CRowDouble x=vector<double>::Zeros(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(s);
CRowDouble bndl=vector<double>::Full(2,-1);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(bndl,AL_NaN);
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(bndl);
CRowDouble bndu=vector<double>::Ones(2);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(bndu,AL_NaN);
if(_spoil_scenario==10)
Spoil_Vector_By_Deleting_Element(bndu);
CMinBCState state;
double epsg=0;
if(_spoil_scenario==11)
epsg=AL_NaN;
if(_spoil_scenario==12)
epsg=AL_POSINF;
if(_spoil_scenario==13)
epsg=AL_NEGINF;
double epsf=0;
if(_spoil_scenario==14)
epsf=AL_NaN;
if(_spoil_scenario==15)
epsf=AL_POSINF;
if(_spoil_scenario==16)
epsf=AL_NEGINF;
double epsx=0.000001;
if(_spoil_scenario==17)
epsx=AL_NaN;
if(_spoil_scenario==18)
epsx=AL_POSINF;
if(_spoil_scenario==19)
epsx=AL_NEGINF;
int maxits=0;
CAlglib::MinBCCreate(x,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Then we activate OptGuard integrity checking.
//--- OptGuard monitor helps to catch common coding and problem statement
//--- issues, like:
//--- * discontinuity of the target function (C0 continuity violation)
//--- * nonsmoothness of the target function (C1 continuity violation)
//--- * erroneous analytic gradient, i.e. one inconsistent with actual
//--- change in the target/constraints
//--- OptGuard is essential for early prototyping stages because such
//--- problems often result in premature termination of the optimizer
//--- which is really hard to distinguish from the correct termination.
//--- IMPORTANT: GRADIENT VERIFICATION IS PERFORMED BY MEANS OF NUMERICAL
//--- DIFFERENTIATION. DO NOT USE IT IN PRODUCTION CODE!!!!!!!
//--- Other OptGuard checks add moderate overhead, but anyway
//--- it is better to turn them off when they are not needed.
CAlglib::MinBCOptGuardSmoothness(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCOptGuardGradient(state,0.001);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and evaluate results
CMinBCReport rep;
CAlglib::MinBCOptimize(state,Grad,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={-1,1};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
}
//--- Check that OptGuard did not report errors
//--- NOTE: want to test OptGuard? Try breaking the gradient - say, add
//--- 1.0 to some of its components.
COptGuardReport ogrep;
CAlglib::MinBCOptGuardResults(state,ogrep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_badgradsuspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc0suspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc1suspected,false);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void TEST_MinBC_NumDif(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
CNDimensional_Func1 Func;
CNDimensional_Rep Rep;
CObject Obj;
for(_spoil_scenario=-1; _spoil_scenario<23; _spoil_scenario++)
{
//--- This example demonstrates minimization of
//--- f(x,y) = 100*(x+3)^4+(y-3)^4
//--- subject to box constraints
//--- -1<=x<=+1, -1<=y<=+1
//--- using MinBC optimizer with:
//--- * numerical differentiation being used
//--- * initial point x=[0,0]
//--- * unit scale being set for all variables (see minbcsetscale for more info)
//---*stopping criteria set to "terminate after short enough step"
//--- * OptGuard integrity check being used to check problem statement
//--- for some common errors like nonsmoothness or bad analytic gradient
CRowDouble x=vector<double>::Zeros(2);
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
CRowDouble s=vector<double>::Ones(2);
if(_spoil_scenario==3)
Spoil_Vector_By_Value(s,AL_NaN);
if(_spoil_scenario==4)
Spoil_Vector_By_Value(s,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(s,AL_NEGINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Deleting_Element(s);
CRowDouble bndl=vector<double>::Full(2,-1);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(bndl,AL_NaN);
if(_spoil_scenario==8)
Spoil_Vector_By_Deleting_Element(bndl);
CRowDouble bndu=vector<double>::Ones(2);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(bndu,AL_NaN);
if(_spoil_scenario==10)
Spoil_Vector_By_Deleting_Element(bndu);
CMinBCState state;
double epsg=0;
if(_spoil_scenario==11)
epsg=AL_NaN;
if(_spoil_scenario==12)
epsg=AL_POSINF;
if(_spoil_scenario==13)
epsg=AL_NEGINF;
double epsf=0;
if(_spoil_scenario==14)
epsf=AL_NaN;
if(_spoil_scenario==15)
epsf=AL_POSINF;
if(_spoil_scenario==16)
epsf=AL_NEGINF;
double epsx=0.000001;
if(_spoil_scenario==17)
epsx=AL_NaN;
if(_spoil_scenario==18)
epsx=AL_POSINF;
if(_spoil_scenario==19)
epsx=AL_NEGINF;
int maxits=0;
double diffstep=1.0e-6;
if(_spoil_scenario==20)
diffstep=AL_NaN;
if(_spoil_scenario==21)
diffstep=AL_POSINF;
if(_spoil_scenario==22)
diffstep=AL_NEGINF;
//--- Now we are ready to actually optimize something:
//--- * first we create optimizer
//--- * we add boundary constraints
//--- * we tune stopping conditions
//--- * and, finally, optimize and obtain results...
CAlglib::MinBCCreateF(x,diffstep,state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetBC(state,bndl,bndu);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetScale(state,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCSetCond(state,epsg,epsf,epsx,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Then we activate OptGuard integrity checking.
//--- Numerical differentiation always produces "correct" gradient
//--- (with some truncation error, but unbiased). Thus, we just have
//--- to check smoothness properties of the target: C0 and C1 continuity.
//--- Sometimes user accidentally tries to solve nonsmooth problems
//--- with smooth optimizer. OptGuard helps to detect such situations
//--- early, at the prototyping stage.
CAlglib::MinBCOptGuardSmoothness(state);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Optimize and evaluate results
CMinBCReport rep;
CAlglib::MinBCOptimize(state,Func,Rep,Obj);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCResults(state,x,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={-1,1};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.005);
}
//--- Check that OptGuard did not report errors
//--- Want to challenge OptGuard? Try to make your problem
//--- nonsmooth by replacing 100*(x+3)^4 by 100*|x+3| and
//--- real-run optimizer.
COptGuardReport ogrep;
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MinBCOptGuardResults(state,ogrep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc0suspected,false);
_TestResult=_TestResult && Doc_Test_Bool(ogrep.m_nonc1suspected,false);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple model built with IDW-MSTAB algorithm |
//+------------------------------------------------------------------+
void TEST_IDW_D_MSTAB(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example illustrates basic concepts of the IDW models:
//--- creation and evaluation.
//--- Suppose that we have set of 2-dimensional points with associated
//--- scalar function values, and we want to build an IDW model using
//--- our data.
//--- NOTE: we can work with N-dimensional models and vector-valued functions too :)
//--- Typical sequence of steps is given below:
//--- 1. we create IDW builder object
//--- 2. we attach our dataset to the IDW builder and tune algorithm settings
//--- 3. we generate IDW model
//--- 4. we use IDW model instance (evaluate, serialize, etc.)
double v;
//--- Step 1: IDW builder creation.
//--- We have to specify dimensionality of the space (2 or 3) and
//--- dimensionality of the function (scalar or vector).
//--- New builder object is empty - it has not dataset and uses
//--- default model construction settings
CIDWBuilder builder;
CAlglib::IDWBuilderCreate(2,1,builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Step 2: dataset addition
//--- XY contains two points - x0=(-1,0) and x1=(+1,0) -
//--- and two function values f(x0)=2, f(x1)=3.
matrix<double> XY={{-1,0,2},{+1,0,3}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::IDWBuilderSetPoints(builder,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Step 3: choose IDW algorithm and generate model
//--- We use modified stabilized IDW algorithm with following parameters:
//--- * SRad - set to 5.0 (search radius must be large enough)
//--- IDW-MSTAB algorithm is a state-of-the-art implementation of IDW which
//--- is competitive with RBFs and bicubic splines. See comments on the
//--- idwbuildersetalgomstab() function for more information.
CIDWModelShell model;
CIDWReport rep;
CAlglib::IDWBuilderSetAlgoMSTAB(builder,5.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::IDWFit(builder,model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Step 4: model was built, evaluate its value
v=CAlglib::IDWCalc2(model,1.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,3.000,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| IDW model serialization/unserialization |
//+------------------------------------------------------------------+
void TEST_IDW_D_Serialize(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example shows how to serialize and unserialize IDW model.
//--- Suppose that we have set of 2-dimensional points with associated
//--- scalar function values, and we have built an IDW model using
//--- our data.
//--- This model can be serialized to string or stream. ALGLIB supports
//--- flexible (un)serialization, i.e. you can move serialized model
//--- representation between different machines (32-bit or 64-bit),
//--- different CPU architectures (x86/64, ARM) or even different
//--- programming languages supported by ALGLIB (C#, C++, ...).
//--- Our first step is to build model, evaluate it at point (1,0),
//--- and serialize it to string.
string s;
double v;
matrix<double> XY={{-1,0,2},{+1,0,3}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CIDWBuilder builder;
CIDWModelShell model;
CIDWModelShell model2;
CIDWReport rep;
CAlglib::IDWBuilderCreate(2,1,builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::IDWBuilderSetPoints(builder,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::IDWBuilderSetAlgoMSTAB(builder,5.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::IDWFit(builder,model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::IDWCalc2(model,1.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,3.000,0.005);
//--- Serialization + unserialization to a different instance
//--- of the model class.
CAlglib::IDWSerialize(model,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::IDWUnserialize(s,model2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Evaluate unserialized model at the same point
v=CAlglib::IDWCalc2(model2,1.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,3.000,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Parametric Ramer-Douglas-Peucker approximation |
//+------------------------------------------------------------------+
void TEST_Parametric_RDP(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<7; _spoil_scenario++)
{
//--- We use RDP algorithm to approximate parametric 2D curve given by
//--- locations in t=0,1,2,3 (see below), which form piecewise linear
//--- trajectory through D-dimensional space (2-dimensional in our example).
//--- |
//--- |
//--- - * * X2................X3
//--- | .
//--- | .
//--- - * * . * * * *
//--- | .
//--- | .
//--- - * X1 * * * *
//--- | .....
//--- | ....
//--- X0----|-----|-----|-----|-----|-----|---
int npoints=4;
int ndimensions=2;
matrix<double> X={{0,0},{2,1},{3,3},{6,3}};
CMatrixDouble x=X;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(x);
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(x);
//--- Approximation of parametric curve is performed by another parametric curve
//--- with lesser amount of points. It allows to work with "compressed"
//--- representation, which needs smaller amount of memory. Say, in our example
//--- (we allow points with error smaller than 0.8) approximation will have
//--- just two sequential sections connecting X0 with X2, and X2 with X3.
//--- |
//--- |
//--- - * * X2................X3
//--- | .
//--- | .
//--- - * . * * * *
//--- | .
//--- | .
//--- - . X1 * * * *
//--- | .
//--- | .
//--- X0----|-----|-----|-----|-----|-----|---
CMatrixDouble y;
int idxy[];
int nsections;
int limitcnt=0;
double limiteps=0.8;
if(_spoil_scenario==5)
limiteps=AL_POSINF;
if(_spoil_scenario==6)
limiteps=AL_NEGINF;
CAlglib::ParametricRDPFixed(x,npoints,ndimensions,limitcnt,limiteps,y,idxy,nsections);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
int check[]={0,2,3};
_TestResult=_TestResult && Doc_Test_Int(nsections,2);
_TestResult=_TestResult && Doc_Test_Int_Vector(idxy,check);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Bilinear spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline2D_Bilinear(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<16; _spoil_scenario++)
{
//--- We use bilinear spline to interpolate f(x,y)=x^2+2*y^2 sampled
//--- at (x,y) from [0.0, 0.5, 1.0] X [0.0, 1.0].
double X[]={0.0,0.5,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
double Y[]={0.0,1.0};
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double F[]={0.00,0.25,1.00,2.00,2.25,3.00};
CRowDouble f=F;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(f);
double vx=0.25;
if(_spoil_scenario==12)
vx=AL_POSINF;
if(_spoil_scenario==13)
vx=AL_NEGINF;
double vy=0.50;
if(_spoil_scenario==14)
vy=AL_POSINF;
if(_spoil_scenario==15)
vy=AL_NEGINF;
double v;
CSpline2DInterpolantShell s;
//--- build spline
CAlglib::Spline2DBuildBilinearV(x,3,y,2,f,1,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S(0.25,0.50)
v=CAlglib::Spline2DCalc(s,vx,vy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.1250,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Bilinear spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline2D_Bicubic(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<16; _spoil_scenario++)
{
//--- We use bilinear spline to interpolate f(x,y)=x^2+2*y^2 sampled
//--- at (x,y) from [0.0, 0.5, 1.0] X [0.0, 1.0].
double X[]={0.0,0.5,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
double Y[]={0.0,1.0};
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double F[]={0.00,0.25,1.00,2.00,2.25,3.00};
CRowDouble f=F;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(f);
double vx=0.25;
if(_spoil_scenario==12)
vx=AL_POSINF;
if(_spoil_scenario==13)
vx=AL_NEGINF;
double vy=0.50;
if(_spoil_scenario==14)
vy=AL_POSINF;
if(_spoil_scenario==15)
vy=AL_NEGINF;
double v;
double dx;
double dy;
double dxy;
CSpline2DInterpolantShell s;
//--- build spline
CAlglib::Spline2DBuildBicubicV(x,3,y,2,f,1,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S(0.25,0.50)
v=CAlglib::Spline2DCalc(s,vx,vy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.0625,0.00005);
//--- calculate derivatives
CAlglib::Spline2DDiff(s,vx,vy,v,dx,dy,dxy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.0625,0.00005);
_TestResult=_TestResult && Doc_Test_Real(dx,0.5000,0.00005);
_TestResult=_TestResult && Doc_Test_Real(dy,2.0000,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Fitting bicubic spline to irregular data |
//+------------------------------------------------------------------+
void TEST_Spline2D_Fit_Blocklls(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<5; _spoil_scenario++)
{
//--- We use bicubic spline to reproduce f(x,y)=1/(1+x^2+2*y^2) sampled
//--- at irregular points (x,y) from [-1,+1]*[-1,+1]
//--- We have 5 such points, located approximately at corners of the area
//--- and its center - but not exactly at the grid. Thus, we have to FIT
//--- the spline, i.e. to solve least squares problem
matrix<double> XY={{-0.987,-0.902,0.359},{0.948,-0.992,0.347},{-1.000,1.000,0.333},{1.000,0.973,0.339},{0.017,0.180,0.968}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Matrix_By_Deleting_Row(xy);
if(_spoil_scenario==4)
Spoil_Matrix_By_Deleting_Col(xy);
//--- First step is to create spline2dbuilder object and set its properties:
//--- * d=1 means that we create vector-valued spline with 1 component
//--- * we specify dataset xy
//--- * we rely on automatic selection of interpolation area
//--- * we tell builder that we want to use 5x5 grid for an underlying spline
//--- * we choose least squares solver named BlockLLS and configure it by
//--- telling that we want to apply zero nonlinearity penalty.
//--- NOTE: you can specify non-zero lambdav if you want to make your spline
//--- more "rigid", i.e. to penalize nonlinearity.
//--- NOTE: ALGLIB has two solvers which fit bicubic splines to irregular data,
//--- one of them is BlockLLS and another one is FastDDM. Former is
//--- intended for moderately sized grids (up to 512x512 nodes, although
//--- it may take up to few minutes); it is the most easy to use and
//--- control spline fitting function in the library. Latter, FastDDM,
//--- is intended for efficient solution of large-scale problems
//--- (up to 100.000.000 nodes). Both solvers can be parallelized, but
//--- FastDDM is much more efficient. See comments for more information.
CSpline2DBuilder builder;
int d=1;
double lambdav=0.000;
CAlglib::Spline2DBuilderCreate(d,builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DBuilderSetPoints(builder,xy,5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DBuilderSetGrid(builder,5,5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DBuilderSetAlgoBlockLLS(builder,lambdav);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now we are ready to fit and evaluate our results
CSpline2DInterpolantShell s;
CSpline2DFitReport rep;
CAlglib::Spline2DFit(builder,s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- evaluate results - function value at the grid is reproduced exactly
double v;
v=CAlglib::Spline2DCalc(s,-1,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.333000,0.005);
//--- check maximum error - it must be nearly zero
_TestResult=_TestResult && Doc_Test_Real(rep.m_maxerror,0.000,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Unpacking bilinear spline |
//+------------------------------------------------------------------+
void TEST_Spline2D_Unpack(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- We build bilinear spline for f(x,y)=x+2*y+3*xy for (x,y) in [0,1].
//--- Then we demonstrate how to unpack it.
double X[]={0.0,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
double Y[]={0.0,1.0};
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double F[]={0.00,1.00,2.00,6.00};
CRowDouble f=F;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(f);
CMatrixDouble c;
int m;
int n;
int d;
CSpline2DInterpolantShell s;
//--- build spline
CAlglib::Spline2DBuildBilinearV(x,2,y,2,f,1,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- unpack and test
CAlglib::Spline2DUnpackV(s,m,n,d,c);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
matrix<double> check={{0,1,0,1,0,2,0,0,1,3,0,0,0,0,0,0,0,0,0,0}};
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Copy and transform |
//+------------------------------------------------------------------+
void TEST_Spline2D_CopyTrans(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<16; _spoil_scenario++)
{
//--- We build bilinear spline for f(x,y)=x+2*y for (x,y) in [0,1].
//--- Then we apply several transformations to this spline.
double X[]={0.0,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
double Y[]={0.0,1.0};
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double F[]={0.00,1.00,2.00,3.00};
CRowDouble f=F;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(f);
CSpline2DInterpolantShell s;
CSpline2DInterpolantShell snew;
double v;
CAlglib::Spline2DBuildBilinearV(x,2,y,2,f,1,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- copy spline, apply transformation x:=2*xnew, y:=4*ynew
//--- evaluate at (xnew,ynew) = (0.25,0.25) - should be same as (x,y)=(0.5,1.0)
CAlglib::Spline2DCopy(s,snew);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DLinTransXY(snew,2.0,0.0,4.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::Spline2DCalc(snew,0.25,0.25);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.00005);
//--- copy spline, apply transformation SNew:=2*S+3
CAlglib::Spline2DCopy(s,snew);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DLinTransF(snew,2.0,3.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::Spline2DCalc(snew,0.5,1.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,8.000,0.00005);
//--- Same example, but for vector spline (f0,f1) = {x+2*y, 2*x+y}
double F2[]={0.00,0.00,1.00,2.00,2.00,1.00,3.00,3.00};
CRowDouble f2=F2;
if(_spoil_scenario==12)
Spoil_Vector_By_Value(f2,AL_NaN);
if(_spoil_scenario==13)
Spoil_Vector_By_Value(f2,AL_POSINF);
if(_spoil_scenario==14)
Spoil_Vector_By_Value(f2,AL_NEGINF);
if(_spoil_scenario==15)
Spoil_Vector_By_Deleting_Element(f2);
CRowDouble vr;
CAlglib::Spline2DBuildBilinearV(x,2,y,2,f2,2,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- copy spline, apply transformation x:=2*xnew, y:=4*ynew
CAlglib::Spline2DCopy(s,snew);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DLinTransXY(snew,2.0,0.0,4.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DCalcV(snew,0.25,0.25,vr);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={2.500,2.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(vr,check,0.00005);
}
//--- copy spline, apply transformation SNew:=2*S+3
CAlglib::Spline2DCopy(s,snew);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DLinTransF(snew,2.0,3.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DCalcV(snew,0.5,1.0,vr);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={8.000,7.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(vr,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Copy and transform |
//+------------------------------------------------------------------+
void TEST_Spline2d_Vector(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<12; _spoil_scenario++)
{
//--- We build bilinear vector-valued spline (f0,f1) = {x+2*y, 2*x+y}
//--- Spline is built using function values at 2x2 grid: (x,y)=[0,1]*[0,1]
//--- Then we perform evaluation at (x,y)=(0.1,0.3)
double X[]={0.0,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
double Y[]={0.0,1.0};
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
double F[]={0.00,0.00,1.00,2.00,2.00,1.00,3.00,3.00};
CRowDouble f=F;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(f);
CSpline2DInterpolantShell s;
CRowDouble vr;
CAlglib::Spline2DBuildBilinearV(x,2,y,2,f,2,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::Spline2DCalcV(s,0.1,0.3,vr);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0.700,0.500};
_TestResult=_TestResult && Doc_Test_Real_Vector(vr,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Trilinear spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline3D_Trilinear(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<22; _spoil_scenario++)
{
//--- We use trilinear spline to interpolate f(x,y,z)=x+xy+z sampled
//--- at (x,y,z) from [0.0, 1.0] X [0.0, 1.0] X [0.0, 1.0].
//--- We store x, y and z-values at local arrays with same names.
//--- Function values are stored in the array F as follows:
//--- f[0] (x,y,z) = (0,0,0)
//--- f[1] (x,y,z) = (1,0,0)
//--- f[2] (x,y,z) = (0,1,0)
//--- f[3] (x,y,z) = (1,1,0)
//--- f[4] (x,y,z) = (0,0,1)
//--- f[5] (x,y,z) = (1,0,1)
//--- f[6] (x,y,z) = (0,1,1)
//--- f[7] (x,y,z) = (1,1,1)
double X[]={0.0,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
CRowDouble y=X;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
CRowDouble z=X;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(z,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(z,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(z,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(z);
double F[]={0,1,0,2,1,2,1,3};
CRowDouble f=F;
if(_spoil_scenario==12)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==13)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==14)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==15)
Spoil_Vector_By_Deleting_Element(f);
double vx=0.50;
if(_spoil_scenario==16)
vx=AL_POSINF;
if(_spoil_scenario==17)
vx=AL_NEGINF;
double vy=0.50;
if(_spoil_scenario==18)
vy=AL_POSINF;
if(_spoil_scenario==19)
vy=AL_NEGINF;
double vz=0.50;
if(_spoil_scenario==20)
vz=AL_POSINF;
if(_spoil_scenario==21)
vz=AL_NEGINF;
double v;
CSpline3DInterpolant s;
//--- build spline
CAlglib::Spline3DBuildTrilinearV(x,2,y,2,z,2,f,1,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S(0.5,0.5,0.5)
v=CAlglib::Spline3DCalc(s,vx,vy,vz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,1.2500,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Vector-valued trilinear spline interpolation |
//+------------------------------------------------------------------+
void TEST_Spline3D_Vector(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<22; _spoil_scenario++)
{
//--- We use trilinear vector-valued spline to interpolate {f0,f1}={x+xy+z,x+xy+yz+z}
//--- sampled at (x,y,z) from [0.0, 1.0] X [0.0, 1.0] X [0.0, 1.0].
//--- We store x, y and z-values at local arrays with same names.
//--- Function values are stored in the array F as follows:
//--- f[0] f0, (x,y,z) = (0,0,0)
//--- f[1] f1, (x,y,z) = (0,0,0)
//--- f[2] f0, (x,y,z) = (1,0,0)
//--- f[3] f1, (x,y,z) = (1,0,0)
//--- f[4] f0, (x,y,z) = (0,1,0)
//--- f[5] f1, (x,y,z) = (0,1,0)
//--- f[6] f0, (x,y,z) = (1,1,0)
//--- f[7] f1, (x,y,z) = (1,1,0)
//--- f[8] f0, (x,y,z) = (0,0,1)
//--- f[9] f1, (x,y,z) = (0,0,1)
//--- f[10] f0, (x,y,z) = (1,0,1)
//--- f[11] f1, (x,y,z) = (1,0,1)
//--- f[12] f0, (x,y,z) = (0,1,1)
//--- f[13] f1, (x,y,z) = (0,1,1)
//--- f[14] f0, (x,y,z) = (1,1,1)
//--- f[15] f1, (x,y,z) = (1,1,1)
double X[]={0.0,1.0};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
CRowDouble y=X;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
CRowDouble z=X;
if(_spoil_scenario==8)
Spoil_Vector_By_Value(z,AL_NaN);
if(_spoil_scenario==9)
Spoil_Vector_By_Value(z,AL_POSINF);
if(_spoil_scenario==10)
Spoil_Vector_By_Value(z,AL_NEGINF);
if(_spoil_scenario==11)
Spoil_Vector_By_Deleting_Element(z);
double F[]={0,0,1,1,0,0,2,2,1,1,2,2,1,2,3,4};
CRowDouble f=F;
if(_spoil_scenario==12)
Spoil_Vector_By_Value(f,AL_NaN);
if(_spoil_scenario==13)
Spoil_Vector_By_Value(f,AL_POSINF);
if(_spoil_scenario==14)
Spoil_Vector_By_Value(f,AL_NEGINF);
if(_spoil_scenario==15)
Spoil_Vector_By_Deleting_Element(f);
double vx=0.50;
if(_spoil_scenario==16)
vx=AL_POSINF;
if(_spoil_scenario==17)
vx=AL_NEGINF;
double vy=0.50;
if(_spoil_scenario==18)
vy=AL_POSINF;
if(_spoil_scenario==19)
vy=AL_NEGINF;
double vz=0.50;
if(_spoil_scenario==20)
vz=AL_POSINF;
if(_spoil_scenario==21)
vz=AL_NEGINF;
CSpline3DInterpolant s;
//--- build spline
CAlglib::Spline3DBuildTrilinearV(x,2,y,2,z,2,f,2,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S(0.5,0.5,0.5) - we have vector of values instead of single value
CRowDouble v;
CAlglib::Spline3DCalcV(s,vx,vy,vz,v);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={1.2500,1.5000};
_TestResult=_TestResult && Doc_Test_Real_Vector(v,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void TEST_RBF_D_HRBF(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example illustrates basic concepts of the RBF models: creation, modification,
//--- evaluation.
//--- Suppose that we have set of 2-dimensional points with associated
//--- scalar function values, and we want to build a RBF model using
//--- our data.
//--- NOTE: we can work with 3D models too :)
//--- Typical sequence of steps is given below:
//--- 1. we create RBF model object
//--- 2. we attach our dataset to the RBF model and tune algorithm settings
//--- 3. we rebuild RBF model using QNN algorithm on new data
//--- 4. we use RBF model (evaluate, serialize, etc.)
double v;
//--- Step 1: RBF model creation.
//--- We have to specify dimensionality of the space (2 or 3) and
//--- dimensionality of the function (scalar or vector).
//--- New model is empty - it can be evaluated,
//--- but we just get zero value at any point.
CRBFModel model;
CAlglib::RBFCreate(2,1,model);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::RBFCalc2(model,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.000,0.005);
//--- Step 2: we add dataset.
//--- XY contains two points - x0=(-1,0) and x1=(+1,0) -
//--- and two function values f(x0)=2, f(x1)=3.
//--- We added points, but model was not rebuild yet.
//--- If we call RBFCalc2(), we still will get 0.0 as result.
matrix<double> XY={{-1,0,2},{+1,0,3}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::RBFSetPoints(model,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::RBFCalc2(model,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.000,0.005);
//--- Step 3: rebuild model
//--- After we've configured model, we should rebuild it -
//--- it will change coefficients stored internally in the
//--- rbfmodel structure.
//--- We use hierarchical RBF algorithm with following parameters:
//--- * RBase - set to 1.0
//--- * NLayers - three layers are used (although such simple problem
//--- does not need more than 1 layer)
//--- * LambdaReg - is set to zero value, no smoothing is required
CRBFReport rep;
CAlglib::RBFSetAlgoHierarchical(model,1.0,3,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFBuildModel(model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
//--- Step 4: model was built
//--- After call of RBFBuildModel(), RBFCalc2() will return
//--- value of the new model.
v=CAlglib::RBFCalc2(model,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Working with vector functions |
//+------------------------------------------------------------------+
void TEST_RBF_D_Vector(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- Suppose that we have set of 2-dimensional points with associated VECTOR
//--- function values, and we want to build a RBF model using our data.
//--- Typical sequence of steps is given below:
//--- 1. we create RBF model object
//--- 2. we attach our dataset to the RBF model and tune algorithm settings
//--- 3. we rebuild RBF model using new data
//--- 4. we use RBF model (evaluate, serialize, etc.)
CRowDouble x;
CRowDouble y;
//--- Step 1: RBF model creation.
//--- We have to specify dimensionality of the space (equal to 2) and
//--- dimensionality of the function (2-dimensional vector function).
//--- New model is empty - it can be evaluated,
//--- but we just get zero value at any point.
CRBFModel model;
CAlglib::RBFCreate(2,2,model);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double X[]={+1,+1};
x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
CAlglib::RBFCalc(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={0.000,0.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.005);
}
//--- Step 2: we add dataset.
//--- XY arrays containt four points:
//--- * (x0,y0) = (+1,+1), f(x0,y0)=(0,-1)
//--- * (x1,y1) = (+1,-1), f(x1,y1)=(-1,0)
//--- * (x2,y2) = (-1,-1), f(x2,y2)=(0,+1)
//--- * (x3,y3) = (-1,+1), f(x3,y3)=(+1,0)
matrix<double> XY={{+1,+1,0,-1},{+1,-1,-1,0},{-1,-1,0,+1},{-1,+1,+1,0}};
CMatrixDouble xy=XY;
if(_spoil_scenario==3)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==4)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==5)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::RBFSetPoints(model,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- We added points, but model was not rebuild yet.
//--- If we call RBFCalc(), we still will get 0.0 as result.
CAlglib::RBFCalc(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real_Vector(y,vector<double>::Zeros(2),0.005);
//--- Step 3: rebuild model
//--- We use hierarchical RBF algorithm with following parameters:
//--- * RBase - set to 1.0
//--- * NLayers - three layers are used (although such simple problem
//--- does not need more than 1 layer)
//--- * LambdaReg - is set to zero value, no smoothing is required
//--- After we've configured model, we should rebuild it -
//--- it will change coefficients stored internally in the
//--- rbfmodel structure.
CRBFReport rep;
CAlglib::RBFSetAlgoHierarchical(model,1.0,3,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFBuildModel(model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
//--- Step 4: model was built
//--- After call of RBFBuildModel(), RBFCalc() will return
//--- value of the new model.
CAlglib::RBFCalc(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0.000,-1.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//|RBF models - working with polynomial term |
//+------------------------------------------------------------------+
void TEST_RBF_D_PolTerm(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example show how to work with polynomial term
//--- Suppose that we have set of 2-dimensional points with associated
//--- scalar function values, and we want to build a RBF model using
//--- our data.
//--- We use hierarchical RBF algorithm with following parameters:
//--- * RBase - set to 1.0
//--- * NLayers - three layers are used (although such simple problem
//--- does not need more than 1 layer)
//--- * LambdaReg - is set to zero value, no smoothing is required
double v;
CRBFModel model;
matrix<double> XY={{-1,0,2},{+1,0,3}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CRBFReport rep;
CAlglib::RBFCreate(2,1,model);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFSetPoints(model,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFSetAlgoHierarchical(model,1.0,3,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- By default, RBF model uses linear term. It means that model
//--- looks like
//--- f(x,y) = SUM(RBF[i]) + a*x + b*y + c
//--- where RBF[i] is I-th radial basis function and a*x+by+c is a
//--- linear term. Having linear terms in a model gives us:
//--- (1) improved extrapolation properties
//--- (2) linearity of the model when data can be perfectly fitted
//--- by the linear function
//--- (3) linear asymptotic behavior
//--- Our simple dataset can be modelled by the linear function
//--- f(x,y) = 0.5*x + 2.5
//--- and RBFBuildModel() with default settings should preserve this
//--- linearity.
int nx;
int ny;
int nc;
int modelversion;
CMatrixDouble xwr;
CMatrixDouble c;
CAlglib::RBFBuildModel(model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
CAlglib::RBFUnpack(model,nx,ny,xwr,nc,c,modelversion);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
matrix<double> check={{0.500,0.000,2.500}};
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,check,0.005);
}
//--- asymptotic behavior of our function is linear
v=CAlglib::RBFCalc2(model,1000.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,502.50,0.05);
//--- Instead of linear term we can use constant term. In this case
//--- we will get model which has form
//--- f(x,y) = SUM(RBF[i]) + c
//--- where RBF[i] is I-th radial basis function and c is a constant,
//--- which is equal to the average function value on the dataset.
//--- Because we've already attached dataset to the model the only
//--- thing we have to do is to call rbfsetconstterm() and then
//--- rebuild model with RBFBuildModel().
CAlglib::RBFSetConstTerm(model);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFBuildModel(model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
CAlglib::RBFUnpack(model,nx,ny,xwr,nc,c,modelversion);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
matrix<double> check={{0.000,0.000,2.500}};
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,check,0.005);
} //--- asymptotic behavior of our function is constant
v=CAlglib::RBFCalc2(model,1000.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.005);
//--- Finally, we can use zero term. Just plain RBF without polynomial
//--- part:
//--- f(x,y) = SUM(RBF[i])
//--- where RBF[i] is I-th radial basis function.
CAlglib::RBFSetZeroTerm(model);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFBuildModel(model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
CAlglib::RBFUnpack(model,nx,ny,xwr,nc,c,modelversion);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
matrix<double> check=matrix<double>::Zeros(1,3);
_TestResult=_TestResult && Doc_Test_Real_Matrix(c,check,0.005);
}
//--- asymptotic behavior of our function is just zero constant
v=CAlglib::RBFCalc2(model,1000.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.000,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Serialization/unserialization |
//+------------------------------------------------------------------+
void TEST_RBF_D_Serialize(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example show how to serialize and unserialize RBF model
//--- Suppose that we have set of 2-dimensional points with associated
//--- scalar function values, and we want to build a RBF model using
//--- our data. Then we want to serialize it to string and to unserialize
//--- from string, loading to another instance of RBF model.
//--- Here we assume that you already know how to create RBF models.
string s;
double v;
CRBFModel model0;
CRBFModel model1;
matrix<double> XY={{-1,0,2},{+1,0,3}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CRBFReport rep;
//--- model initialization
CAlglib::RBFCreate(2,1,model0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFSetPoints(model0,xy);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFSetAlgoHierarchical(model0,1.0,3,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFBuildModel(model0,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
//--- Serialization - it looks easy,
//--- but you should carefully read next section.
CAlglib::RBFSerialize(model0,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::RBFUnserialize(s,model1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- both models return same value
v=CAlglib::RBFCalc2(model0,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.005);
v=CAlglib::RBFCalc2(model1,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.005);
//--- Previous section shows that model state is saved/restored during
//--- serialization. However, some properties are NOT serialized.
//--- Serialization saves/restores RBF model, but it does NOT saves/restores
//--- settings which were used to build current model. In particular, dataset
//--- which was used to build model, is not preserved.
//--- What does it mean in for us?
//--- Do you remember this sequence: RBFCreate-RBFSetPoints-RBFBuildModel?
//--- First step creates model, second step adds dataset and tunes model
//--- settings, third step builds model using current dataset and model
//--- construction settings.
//--- If you call RBFBuildModel() without calling RBFSetPoints() first, you
//--- will get empty (zero) RBF model. In our example, model0 contains
//--- dataset which was added by RBFSetPoints() call. However, model1 does
//--- NOT contain dataset - because dataset is NOT serialized.
//--- This, if we call RBFBuildModel(model0,rep), we will get same model,
//--- which returns 2.5 at (x,y)=(0,0). However, after same call model1 will
//--- return zero - because it contains RBF model (coefficients), but does NOT
//--- contain dataset which was used to build this model.
//--- Basically, it means that:
//--- * serialization of the RBF model preserves anything related to the model
//--- EVALUATION
//--- * but it does NOT creates perfect copy of the original object.
CAlglib::RBFBuildModel(model0,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::RBFCalc2(model0,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,2.500,0.005);
CAlglib::RBFBuildModel(model1,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
v=CAlglib::RBFCalc2(model1,0.0,0.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.000,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple hierarchical clusterization with Euclidean distance |
//| function |
//+------------------------------------------------------------------+
void TEST_Clst_AHC(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple clusterization example
//--- We have a set of points in 2D space:
//--- (P0,P1,P2,P3,P4) = ((1,1),(1,2),(4,1),(2,3),(4,1.5))
//--- |
//--- | P3
//--- |
//--- | P1
//--- | P4
//--- | P0 P2
//--- |-------------------------
//--- We want to perform Agglomerative Hierarchic Clusterization (AHC),
//--- using complete linkage (default algorithm) and Euclidean distance
//--- (default metric).
//--- In order to do that, we:
//--- * create clusterizer with ClusterizerCreate()
//--- * set points XY and metric (2=Euclidean) with ClusterizerSetPoints()
//--- * run AHC algorithm with ClusterizerRunAHC
//--- You may see that clusterization itself is a minor part of the example,
//--- most of which is dominated by comments :)
CClusterizerState s;
CAHCReport rep;
matrix<double> XY={{1,1},{1,2},{4,1},{2,3},{4,1.5}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::ClusterizerCreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerSetPoints(s,xy,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now we've built our clusterization tree. Rep.z contains information which
//--- is required to build dendrogram. I-th row of rep.z represents one merge
//--- operation, with first cluster to merge having index rep.z[I,0] and second
//--- one having index rep.z[I,1]. Merge result has index NPoints+I.
//--- Clusters with indexes less than NPoints are single-point initial clusters,
//--- while ones with indexes from NPoints to 2*NPoints-2 are multi-point
//--- clusters created during merges.
//--- In our example, Z=[[2,4], [0,1], [3,6], [5,7]]
//--- It means that:
//--- * first, we merge C2=(P2) and C4=(P4), and create C5=(P2,P4)
//--- * then, we merge C2=(P0) and C1=(P1), and create C6=(P0,P1)
//--- * then, we merge C3=(P3) and C6=(P0,P1), and create C7=(P0,P1,P3)
//--- * finally, we merge C5 and C7 and create C8=(P0,P1,P2,P3,P4)
//--- Thus, we have following dendrogram:
//--- ------8-----
//--- | |
//--- | ----7----
//--- | | |
//--- ---5--- | ---6---
//--- | | | | |
//--- P2 P4 P3 P0 P1
CMatrixInt check;
check.Resize(4,2);
check.Set(0,0,2);
check.Set(0,1,4);
check.Set(1,0,0);
check.Set(1,1,1);
check.Set(2,0,3);
check.Set(2,1,6);
check.Set(3,0,5);
check.Set(3,1,7);
_TestResult=_TestResult && Doc_Test_Int_Matrix(rep.m_z,check);
//--- We've built dendrogram above by reordering our dataset.
//--- Without such reordering it would be impossible to build dendrogram without
//--- intersections. Luckily, ahcreport structure contains two additional fields
//--- which help to build dendrogram from your data:
//--- * rep.p, which contains permutation applied to dataset
//--- * rep.pm, which contains another representation of merges
//--- In our example we have:
//--- * P=[3,4,0,2,1]
//--- * PZ=[[0,0,1,1,0,0],[3,3,4,4,0,0],[2,2,3,4,0,1],[0,1,2,4,1,2]]
//--- Permutation array P tells us that P0 should be moved to position 3,
//--- P1 moved to position 4, P2 moved to position 0 and so on:
//--- (P0 P1 P2 P3 P4) => (P2 P4 P3 P0 P1)
//--- Merges array PZ tells us how to perform merges on the sorted dataset.
//--- One row of PZ corresponds to one merge operations, with first pair of
//--- elements denoting first of the clusters to merge (start index, end
//--- index) and next pair of elements denoting second of the clusters to
//--- merge. Clusters being merged are always adjacent, with first one on
//--- the left and second one on the right.
//--- For example, first row of PZ tells us that clusters [0,0] and [1,1] are
//--- merged (single-point clusters, with first one containing P2 and second
//--- one containing P4). Third row of PZ tells us that we merge one single-
//--- point cluster [2,2] with one two-point cluster [3,4].
//--- There are two more elements in each row of PZ. These are the helper
//--- elements, which denote HEIGHT (not size) of left and right subdendrograms.
//--- For example, according to PZ, first two merges are performed on clusterization
//--- trees of height 0, while next two merges are performed on 0-1 and 1-2
//--- pairs of trees correspondingly.
{
int check1[]={3,4,0,2,1};
_TestResult=_TestResult && Doc_Test_Int_Vector(rep.m_p,check1);
}
check.Resize(4,6);
check.Set(0,0,0);
check.Set(0,1,0);
check.Set(0,2,1);
check.Set(0,3,1);
check.Set(0,4,0);
check.Set(0,5,0);
check.Set(1,0,3);
check.Set(1,1,3);
check.Set(1,2,4);
check.Set(1,3,4);
check.Set(1,4,0);
check.Set(1,5,0);
check.Set(2,0,2);
check.Set(2,1,2);
check.Set(2,2,3);
check.Set(2,3,4);
check.Set(2,4,0);
check.Set(2,5,1);
check.Set(3,0,0);
check.Set(3,1,1);
check.Set(3,2,2);
check.Set(3,3,4);
check.Set(3,4,1);
check.Set(3,5,2);
_TestResult=_TestResult && Doc_Test_Int_Matrix(rep.m_pm,check);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple k-means clusterization |
//+------------------------------------------------------------------+
void TEST_Clst_KMeans(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple clusterization example
//--- We have a set of points in 2D space:
//--- (P0,P1,P2,P3,P4) = ((1,1),(1,2),(4,1),(2,3),(4,1.5))
//--- |
//--- | P3
//--- |
//--- | P1
//--- | P4
//--- | P0 P2
//--- |-------------------------
//--- We want to perform k-means++ clustering with K=2.
//--- In order to do that, we:
//--- * create clusterizer with ClusterizerCreate()
//--- * set points XY and metric (must be Euclidean, distype=2) with ClusterizerSetPoints()
//--- * (optional) set number of restarts from random positions to 5
//--- * run k-means algorithm with clusterizerrunkmeans()
//--- You may see that clusterization itself is a minor part of the example,
//--- most of which is dominated by comments :)
CClusterizerState s;
CKmeansReport rep;
matrix<double> XY={{1,1},{1,2},{4,1},{2,3},{4,1.5}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::ClusterizerCreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerSetPoints(s,xy,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerSetKMeansLimits(s,5,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunKMeans(s,2,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- We've performed clusterization, and it succeeded (completion code is +1).
//--- Now first center is stored in the first row of rep.c, second one is stored
//--- in the second row. rep.cidx can be used to determine which center is
//--- closest to some specific point of the dataset.
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,1);
//--- We called ClusterizerSetPoints() with disttype=2 because k-means++
//--- algorithm does NOT support metrics other than Euclidean. But what if we
//--- try to use some other metric?
//--- We change metric type by calling ClusterizerSetPoints() one more time,
//--- and try to run k-means algo again. It fails.
CAlglib::ClusterizerSetPoints(s,xy,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunKMeans(s,2,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(rep.m_terminationtype,-5);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Clusterization with different linkage types |
//+------------------------------------------------------------------+
void TEST_Clst_Linkage(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- We have a set of points in 1D space:
//--- (P0,P1,P2,P3,P4) = (1, 3, 10, 16, 20)
//--- We want to perform Agglomerative Hierarchic Clusterization (AHC),
//--- using either complete or single linkage and Euclidean distance
//--- (default metric).
//--- First two steps merge P0/P1 and P3/P4 independently of the linkage type.
//--- However, third step depends on linkage type being used:
//--- * in case of complete linkage P2=10 is merged with [P0,P1]
//--- * in case of single linkage P2=10 is merged with [P3,P4]
CClusterizerState s;
CAHCReport rep;
matrix<double> XY={{1},{3},{10},{16},{20}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CRowInt cidx;
CRowInt cz;
CAlglib::ClusterizerCreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerSetPoints(s,xy,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- use complete linkage, reduce set down to 2 clusters.
//--- print clusterization with ClusterizerGetKClusters(2).
//--- P2 must belong to [P0,P1]
CAlglib::ClusterizerSetAHCAlgo(s,0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerGetKClusters(rep,2,cidx,cz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
int check[]={1,1,1,0,0};
_TestResult=_TestResult && Doc_Test_Int_Vector(cidx,check);
}
//--- use single linkage, reduce set down to 2 clusters.
//--- print clusterization with ClusterizerGetKClusters(2).
//--- P2 must belong to [P2,P3]
CAlglib::ClusterizerSetAHCAlgo(s,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerGetKClusters(rep,2,cidx,cz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
int check[]={0,0,1,1,1};
_TestResult=_TestResult && Doc_Test_Int_Vector(cidx,check);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Clusterization with different metric types |
//+------------------------------------------------------------------+
void TEST_Clst_Distance(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- We have three points in 4D space:
//--- (P0,P1,P2) = ((1, 2, 1, 2), (6, 7, 6, 7), (7, 6, 7, 6))
//--- We want to try clustering them with different distance functions.
//--- Distance function is chosen when we add dataset to the clusterizer.
//--- We can choose several distance types - Euclidean, city block, Chebyshev,
//--- several correlation measures or user-supplied distance matrix.
//--- Here we'll try three distances: Euclidean, Pearson correlation,
//--- user-supplied distance matrix. Different distance functions lead
//--- to different choices being made by algorithm during clustering.
CClusterizerState s;
CAHCReport rep;
int disttype;
matrix<double> XY={{1,2,1,2},{6,7,6,7},{7,6,7,6}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::ClusterizerCreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- With Euclidean distance function (disttype=2) two closest points
//--- are P1 and P2, thus:
//--- * first, we merge P1 and P2 to form C3=[P1,P2]
//--- * second, we merge P0 and C3 to form C4=[P0,P1,P2]
disttype=2;
CAlglib::ClusterizerSetPoints(s,xy,disttype);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CMatrixInt check;
check.Resize(2,2);
check.Set(0,0,1);
check.Set(0,1,2);
check.Set(1,0,0);
check.Set(1,1,3);
_TestResult=_TestResult && Doc_Test_Int_Matrix(rep.m_z,check);
//--- With Pearson correlation distance function (disttype=10) situation
//--- is different - distance between P0 and P1 is zero, thus:
//--- * first, we merge P0 and P1 to form C3=[P0,P1]
//--- * second, we merge P2 and C3 to form C4=[P0,P1,P2]
disttype=10;
CAlglib::ClusterizerSetPoints(s,xy,disttype);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
check.Set(0,0,0);
check.Set(0,1,1);
check.Set(1,0,2);
check.Set(1,1,3);
_TestResult=_TestResult && Doc_Test_Int_Matrix(rep.m_z,check);
//--- Finally, we try clustering with user-supplied distance matrix:
//--- [ 0 3 1 ]
//--- P = [ 3 0 3 ], where P[i,j] = dist(Pi,Pj)
//--- [ 1 3 0 ]
//--- * first, we merge P0 and P2 to form C3=[P0,P2]
//--- * second, we merge P1 and C3 to form C4=[P0,P1,P2]
CMatrixDouble d;
matrix<double> D={{0,3,1},{3,0,3},{1,3,0}};
d=D;
CAlglib::ClusterizerSetDistances(s,d,true);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
check.Set(0,0,0);
check.Set(0,1,2);
check.Set(1,0,1);
check.Set(1,1,3);
_TestResult=_TestResult && Doc_Test_Int_Matrix(rep.m_z,check);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Obtaining K top clusters from clusterization tree |
//+------------------------------------------------------------------+
void TEST_Clst_KClusters(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- We have a set of points in 2D space:
//--- (P0,P1,P2,P3,P4) = ((1,1),(1,2),(4,1),(2,3),(4,1.5))
//--- |
//--- | P3
//--- |
//--- | P1
//--- | P4
//--- | P0 P2
//--- |-------------------------
//--- We perform Agglomerative Hierarchic Clusterization (AHC) and we want
//--- to get top K clusters from clusterization tree for different K.
CClusterizerState s;
CAHCReport rep;
matrix<double> XY={{1,1},{1,2},{4,1},{2,3},{4,1.5}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CRowInt cidx;
CRowInt cz;
CAlglib::ClusterizerCreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerSetPoints(s,xy,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::ClusterizerRunAHC(s,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- with K=5, every points is assigned to its own cluster:
//--- C0=P0, C1=P1 and so on...
CAlglib::ClusterizerGetKClusters(rep,5,cidx,cz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
int check[]={0,1,2,3,4};
_TestResult=_TestResult && Doc_Test_Int_Vector(cidx,check);
}
//--- with K=1 we have one large cluster C0=[P0,P1,P2,P3,P4,P5]
CAlglib::ClusterizerGetKClusters(rep,1,cidx,cz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
int check[]={0,0,0,0,0};
_TestResult=_TestResult && Doc_Test_Int_Vector(cidx,check);
}
//--- with K=3 we have three clusters C0=[P3], C1=[P2,P4], C2=[P0,P1]
CAlglib::ClusterizerGetKClusters(rep,3,cidx,cz);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
int check[]={2,2,1,0,1};
_TestResult=_TestResult && Doc_Test_Int_Vector(cidx,check);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple classification with random forests |
//+------------------------------------------------------------------+
void TEST_RandomForest_CLS(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple classification example: classify points (x,y) in 2D space
//--- as ones with x>=0 and ones with x<0 (y is ignored, but our classifier
//--- has to find it).
//--- First, we have to create decision forest builder object, load dataset and
//--- specify training settings. Our dataset is specified as matrix, which has
//--- following format:
//--- x0 y0 class0
//--- x1 y1 class1
//--- x2 y2 class2
//--- ....
//--- Here xi and yi can be any values (and in fact you can have any number of
//--- independent variables), and classi MUST be integer number in [0,NClasses)
//--- range. In our example we denote points with x>=0 as class #0, and
//--- ones with negative xi as class #1.
//--- NOTE: if you want to solve regression problem, specify NClasses=1. In
//--- this case last column of xy can be any numeric value.
//--- For the sake of simplicity, our example includes only 4-point dataset.
//--- However, random forests are able to cope with extremely large datasets
//--- having millions of examples.
CDecisionForestBuilder builder;
int nvars=2;
int nclasses=2;
int npoints=4;
matrix<double> XY={{1,1,0},{1,-1,0},{-1,1,1},{-1,-1,1}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::DFBuilderCreate(builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::DFBuilderSetDataset(builder,xy,npoints,nvars,nclasses);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- in our example we train decision forest using full sample - it allows us
//--- to get zero classification error. However, in practical applications smaller
//--- values are used: 50%, 25%, 5% or even less.
CAlglib::DFBuilderSetSubsampleRatio(builder,1.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- we train random forest with just one tree; again, in real life situations
//--- you typically need from 50 to 500 trees.
int ntrees=1;
CDecisionForestShell forest;
CDFReportShell rep;
CAlglib::DFBuilderBuildRandomForest(builder,ntrees,forest,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- with such settings (100% of the training set is used) you can expect
//--- zero classification error. Beautiful results, but remember - in real life
//--- you do not need zero TRAINING SET error, you need good generalization.
_TestResult=_TestResult && Doc_Test_Real(rep.GetRelClsError(),0.0000,0.00005);
//--- now, let's perform some simple processing with dfprocess()
double x[]={+1,0};
double y[];
CAlglib::DFProcess(forest,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={+1,0};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.0005);
}
//--- another option is to use dfprocess0() which returns just first component
//--- of the output vector y. ideal for regression problems and binary classifiers.
double y0=CAlglib::DFProcess0(forest,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(y0,1.000,0.0005);
//--- finally, you can use dfclassify() which returns most probable class index (i.e. argmax y[i]).
int i=CAlglib::DFClassify(forest,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(i,0);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple regression with decision forest |
//+------------------------------------------------------------------+
void TEST_RandomForest_Reg(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple regression example: model f(x,y)=x+y
//--- First, we have to create DF builder object, load dataset and specify
//--- training settings. Our dataset is specified as matrix, which has following
//--- format:
//--- x0 y0 f0
//--- x1 y1 f1
//--- x2 y2 f2
//--- ....
//--- Here xi and yi can be any values, and fi is a dependent function value.
//--- NOTE: you can also solve classification problems with DF models, see
//--- another example for this unit.
CDecisionForestBuilder builder;
int nvars=2;
int nclasses=1;
int npoints=4;
matrix<double> XY={{1,1,+2},{1,-1,0},{-1,1,0},{-1,-1,-2}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::DFBuilderCreate(builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::DFBuilderSetDataset(builder,xy,npoints,nvars,nclasses);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- in our example we train decision forest using full sample - it allows us
//--- to get zero classification error. However, in practical applications smaller
//--- values are used: 50%, 25%, 5% or even less.
CAlglib::DFBuilderSetSubsampleRatio(builder,1.0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- we train random forest with just one tree; again, in real life situations
//--- you typically need from 50 to 500 trees.
int ntrees=1;
CDecisionForestShell model;
CDFReportShell rep;
CAlglib::DFBuilderBuildRandomForest(builder,ntrees,model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- with such settings (full sample is used) you can expect zero RMS error on the
//--- training set. Beautiful results, but remember - in real life you do not
//--- need zero TRAINING SET error, you need good generalization.
_TestResult=_TestResult && Doc_Test_Real(rep.GetRMSError(),0.0000,0.00005);
//--- now, let's perform some simple processing with dfprocess()
double x[]={+1,+1};
double y[];
CAlglib::DFProcess(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={+2};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.0005);
}
//--- another option is to use dfprocess0() which returns just first component
//--- of the output vector y. ideal for regression problems and binary classifiers.
double y0=CAlglib::DFProcess0(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(y0,2.000,0.0005);
//--- there also exist another convenience function, dfclassify(),
//--- but it does not work for regression problems - it always returns -1.
int i=CAlglib::DFClassify(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(i,-1);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Linear regression used to build the very basic model and unpack |
//| coefficients |
//+------------------------------------------------------------------+
void TEST_LinReg_D_Basic(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
//--- In this example we demonstrate linear fitting by f(x|a) = a*exp(0.5*x).
//--- We have:
//--- * xy - matrix of basic function values (exp(0.5*x)) and expected values
matrix<double> XY={{0.606531,1.133719},{0.670320,1.306522},{0.740818,1.504604},{0.818731,1.554663},{0.904837,1.884638},{1.000000,2.072436},{1.105171,2.257285},{1.221403,2.534068},{1.349859,2.622017},{1.491825,2.897713},{1.648721,3.219371}};
CMatrixDouble xy=XY;
int info;
int nvars;
CLinearModelShell model;
CLRReportShell rep;
CRowDouble c;
CAlglib::LRBuildZ(xy,11,1,info,model,rep);
//--- handling exceptions
if(Func_spoil_scenario(-1,_TestResult))
_TestResult=_TestResult && Doc_Test_Int(info,1);
CAlglib::LRUnpack(model,c,nvars);
//--- handling exceptions
if(Func_spoil_scenario(-1,_TestResult))
{
double check[]={1.98650,0.00000};
_TestResult=_TestResult && Doc_Test_Real_Vector(c,check,0.00005);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| SMA(k) filter |
//+------------------------------------------------------------------+
void TEST_Filters_D_SMA(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Here we demonstrate SMA(k) filtering for time series.
double X[]={5,6,7,8};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
//--- Apply filter.
//--- We should get [5, 5.5, 6.5, 7.5] as result
CAlglib::FilterSMA(x,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={5,5.5,6.5,7.5};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| EMA(alpha) filter |
//+------------------------------------------------------------------+
void TEST_Filters_D_EMA(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Here we demonstrate EMA(0.5) filtering for time series.
double X[]={5,6,7,8};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
//--- Apply filter.
//--- We should get [5, 5.5, 6.25, 7.125] as result
CAlglib::FilterEMA(x,0.5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={5,5.5,6.25,7.125};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| LRMA(k) filter |
//+------------------------------------------------------------------+
void TEST_Filters_D_LRMA(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Here we demonstrate LRMA(3) filtering for time series.
double X[]={7,8,8,9,12,12};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
//--- Apply filter.
//--- We should get [7.0000, 8.0000, 8.1667, 8.8333, 11.6667, 12.5000] as result
CAlglib::FilterLRMA(x,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={7.0000,8.0000,8.1667,8.8333,11.6667,12.5000};
_TestResult=_TestResult && Doc_Test_Real_Vector(x,check,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple SSA analysis demo |
//+------------------------------------------------------------------+
void TEST_SSA_D_Basic(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Here we demonstrate SSA trend/noise separation for some toy problem:
//--- small monotonically growing series X are analyzed with 3-tick window
//--- and "top-K" version of SSA, which selects K largest singular vectors
//--- for analysis, with K=1.
CSSAModel s;
double X[]={0,0.5,1,1,1.5,2};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
//--- First, we create SSA model, set its properties and add dataset.
//--- We use window with width=3 and configure model to use direct SSA
//--- algorithm - one which runs exact O(N*W^2) analysis - to extract
//--- one top singular vector. Well, it is toy problem :)
//--- NOTE: SSA model may store and analyze more than one sequence
//--- (say, different sequences may correspond to data collected
//--- from different devices)
CAlglib::SSACreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetWindow(s,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAddSequence(s,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetAlgoTopKDirect(s,1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now we begin analysis. Internally SSA model stores everything it needs:
//--- data, settings, solvers and so on. Right after first call to analysis-
//--- related function it will analyze dataset, build basis and perform analysis.
//--- Subsequent calls to analysis functions will reuse previously computed
//--- basis, unless you invalidate it by changing model settings (or dataset).
CRowDouble trend;
CRowDouble noise;
CAlglib::SSAAnalyzeSequence(s,x,trend,noise);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0.3815,0.5582,0.7810,1.0794,1.5041,2.0105};
_TestResult=_TestResult && Doc_Test_Real_Vector(trend,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple SSA forecasting demo |
//+------------------------------------------------------------------+
void TEST_SSA_D_Forecast(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Here we demonstrate SSA forecasting on some toy problem with clearly
//--- visible linear trend and small amount of noise.
CSSAModel s;
double X[]={0.05,0.96,2.04,3.11,3.97,5.03,5.98,7.02,8.02};
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
//--- First, we create SSA model, set its properties and add dataset.
//--- We use window with width=3 and configure model to use direct SSA
//--- algorithm - one which runs exact O(N*W^2) analysis - to extract
//--- two top singular vectors. Well, it is toy problem :)
//--- NOTE: SSA model may store and analyze more than one sequence
//--- (say, different sequences may correspond to data collected
//--- from different devices)
CAlglib::SSACreate(s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetWindow(s,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAddSequence(s,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetAlgoTopKDirect(s,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Now we begin analysis. Internally SSA model stores everything it needs:
//--- data, settings, solvers and so on. Right after first call to analysis-
//--- related function it will analyze dataset, build basis and perform analysis.
//--- Subsequent calls to analysis functions will reuse previously computed
//--- basis, unless you invalidate it by changing model settings (or dataset).
//--- In this example we show how to use SSAForecastLast() function, which
//--- predicts changed in the last sequence of the dataset. If you want to
//--- perform prediction for some other sequence, use ssaforecastsequence().
CRowDouble trend;
CAlglib::SSAForecastLast(s,3,trend);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Well, we expected it to be [9,10,11]. There exists some difference,
//--- which can be explained by the artificial noise in the dataset.
double check[]={9.0005,9.9322,10.8051};
_TestResult=_TestResult && Doc_Test_Real_Vector(trend,check,0.005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Real-time SSA algorithm with fast incremental updates |
//+------------------------------------------------------------------+
void TEST_SSA_D_Realtime(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<9; _spoil_scenario++)
{
//--- Suppose that you have a constant stream of incoming data, and you want
//--- to regularly perform singular spectral analysis of this stream.
//--- One full run of direct algorithm costs O(N*Width^2) operations, so
//--- the more points you have, the more it costs to rebuild basis from
//--- scratch.
//--- Luckily we have incremental SSA algorithm which can perform quick
//--- updates of already computed basis in O(K*Width^2) ops, where K
//--- is a number of singular vectors extracted. Usually it is orders of
//--- magnitude faster than full update of the basis.
//--- In this example we start from some initial dataset x0. Then we
//--- start appending elements one by one to the end of the last sequence.
//--- NOTE: direct algorithm also supports incremental updates, but
//--- with O(Width^3) cost. Typically K<<Width, so specialized
//--- incremental algorithm is still faster.
CSSAModel s1;
CMatrixDouble a1;
CRowDouble sv1;
int w;
int k;
double X0[]={0.009,0.976,1.999,2.984,3.977,5.002};
CRowDouble x0=X0;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x0,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x0,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x0,AL_NEGINF);
CAlglib::SSACreate(s1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetWindow(s1,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAddSequence(s1,x0);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- set algorithm to the real-time version of top-K, K=2
CAlglib::SSASetAlgoTopKRealtime(s1,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- one more interesting feature of the incremental algorithm is "power-up" cycle.
//--- even with incremental algorithm initial basis calculation costs O(N*Width^2) ops.
//--- if such startup cost is too high for your real-time app, then you may divide
//--- initial basis calculation across several model updates. It results in better
//--- latency at the price of somewhat lesser precision during first few updates.
CAlglib::SSASetPowerUpLength(s1,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- now, after we prepared everything, start to add incoming points one by one;
//--- in the real life, of course, we will perform some work between subsequent update
//--- (analyze something, predict, and so on).
//--- After each append we perform one iteration of the real-time solver. Usually
//--- one iteration is more than enough to update basis. If you have REALLY tight
//--- performance constraints, you may specify fractional amount of iterations,
//--- which means that iteration is performed with required probability.
double updateits=1.0;
if(_spoil_scenario==3)
updateits=AL_NaN;
if(_spoil_scenario==4)
updateits=AL_POSINF;
if(_spoil_scenario==5)
updateits=AL_NEGINF;
CAlglib::SSAAppendPointAndUpdate(s1,5.951,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,7.074,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,7.925,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,8.992,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,9.942,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,11.051,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,11.965,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,13.047,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAppendPointAndUpdate(s1,13.970,updateits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s1,a1,sv1,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Ok, we have our basis in a1[] and singular values at sv1[].
//--- But is it good enough? Let's print it.
{
matrix<double> check={{0.510607,0.753611},{0.575201,0.058445},{0.639081,-0.654717}};
_TestResult=_TestResult && Doc_Test_Real_Matrix(a1,check,0.0005);
}
//--- Ok, two vectors with 3 components each.
//--- But how to understand that is it really good basis?
//--- Let's compare it with direct SSA algorithm on the entire sequence.
CSSAModel s2;
CMatrixDouble a2;
CRowDouble sv2;
double X2[]={0.009,0.976,1.999,2.984,3.977,5.002,5.951,7.074,7.925,8.992,9.942,11.051,11.965,13.047,13.970};
CRowDouble x2=X2;
if(_spoil_scenario==6)
Spoil_Vector_By_Value(x2,AL_NaN);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(x2,AL_POSINF);
if(_spoil_scenario==8)
Spoil_Vector_By_Value(x2,AL_NEGINF);
//---
CAlglib::SSACreate(s2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetWindow(s2,3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAAddSequence(s2,x2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSASetAlgoTopKDirect(s2,2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::SSAGetBasis(s2,a2,sv2,w,k);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- it is exactly the same as one calculated with incremental approach!
{
matrix<double> check={{0.510607,0.753611},{0.575201,0.058445},{0.639081,-0.654717}};
_TestResult=_TestResult && Doc_Test_Real_Matrix(a2,check,0.0005);
}
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple classification with KNN model |
//+------------------------------------------------------------------+
void TEST_KNN_Cls(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple classification example: classify points (x,y) in 2D space
//--- as ones with x>=0 and ones with x<0 (y is ignored, but our classifier
//--- has to find it).
//--- First, we have to create KNN builder object, load dataset and specify
//--- training settings. Our dataset is specified as matrix, which has following
//--- format:
//--- x0 y0 class0
//--- x1 y1 class1
//--- x2 y2 class2
//--- ....
//--- Here xi and yi can be any values (and in fact you can have any number of
//--- independent variables), and classi MUST be integer number in [0,NClasses)
//--- range. In our example we denote points with x>=0 as class #0, and
//--- ones with negative xi as class #1.
//--- NOTE: if you want to solve regression problem, specify dataset in similar
//--- format, but with dependent variable(s) instead of class labels. You
//--- can have dataset with multiple dependent variables, by the way!
//--- For the sake of simplicity, our example includes only 4-point dataset and
//--- really simple K=1 nearest neighbor search. Industrial problems typically
//--- need larger values of K.
CKNNBuilder builder;
int nvars=2;
int nclasses=2;
int npoints=4;
matrix<double> XY={{1,1,0},{1,-1,0},{-1,1,1},{-1,-1,1}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::KNNBuilderCreate(builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::KNNBuilderSetDatasetCLS(builder,xy,npoints,nvars,nclasses);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- we build KNN model with k=1 and eps=0 (exact k-nn search is performed)
int k=1;
double eps=0;
CKNNModel model;
CKNNReport rep;
CAlglib::KNNBuilderBuildKNNModel(builder,k,eps,model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- with such settings (k=1 is used) you can expect zero classification
//--- error on training set. Beautiful results, but remember - in real life
//--- you do not need zero TRAINING SET error, you need good generalization.
_TestResult=_TestResult && Doc_Test_Real(rep.m_RelCLSError,0.0000,0.00005);
//--- now, let's perform some simple processing with knnprocess()
double X[]={+1,0};
CRowDouble x=X;
CRowDouble y;
CAlglib::KNNProcess(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={+1,0};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.0005);
}
//--- another option is to use knnprocess0() which returns just first component
//--- of the output vector y. ideal for regression problems and binary classifiers.
double y0=CAlglib::KNNProcess0(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(y0,1.000,0.0005);
//--- finally, you can use knnclassify() which returns most probable class index (i.e. argmax y[i]).
int i=CAlglib::KNNClassify(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(i,0);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Simple classification with KNN model |
//+------------------------------------------------------------------+
void TEST_KNN_Reg(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple regression example: model f(x,y)=x+y
//--- First, we have to create KNN builder object, load dataset and specify
//--- training settings. Our dataset is specified as matrix, which has following
//--- format:
//--- x0 y0 f0
//--- x1 y1 f1
//--- x2 y2 f2
//--- ....
//--- Here xi and yi can be any values, and fi is a dependent function value.
//--- By the way, with KNN algorithm you can even model functions with multiple
//--- dependent variables!
//--- NOTE: you can also solve classification problems with KNN models, see
//--- another example for this unit.
//--- For the sake of simplicity, our example includes only 4-point dataset and
//--- really simple K=1 nearest neighbor search. Industrial problems typically
//--- need larger values of K.
CKNNBuilder builder;
int nvars=2;
int nout=1;
int npoints=4;
matrix<double> XY={{1,1,+2},{1,-1,0},{-1,1,0},{-1,-1,-2}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::KNNBuilderCreate(builder);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::KNNBuilderSetDatasetReg(builder,xy,npoints,nvars,nout);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- we build KNN model with k=1 and eps=0 (exact k-nn search is performed)
int k=1;
double eps=0;
CKNNModel model;
CKNNReport rep;
CAlglib::KNNBuilderBuildKNNModel(builder,k,eps,model,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- with such settings (k=1 is used) you can expect zero RMS error on the
//--- training set. Beautiful results, but remember - in real life you do not
//--- need zero TRAINING SET error, you need good generalization.
_TestResult=_TestResult && Doc_Test_Real(rep.m_RMSError,0.0000,0.00005);
//--- now, let's perform some simple processing with knnprocess()
double X[]={+1,+1};
CRowDouble x=X;
CRowDouble y;
CAlglib::KNNProcess(model,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={+2};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.0005);
}
//--- another option is to use knnprocess0() which returns just first component
//--- of the output vector y. ideal for regression problems and binary classifiers.
double y0=CAlglib::KNNProcess0(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(y0,2.000,0.0005);
//--- there also exist another convenience function, knnclassify(),
//--- but it does not work for regression problems - it always returns -1.
int i=CAlglib::KNNClassify(model,x);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Int(i,-1);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Regression problem with one output (2=>1) |
//+------------------------------------------------------------------+
void TEST_NN_Regr(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- The very simple example on neural network: network is trained to reproduce
//--- small 2x2 multiplication table.
//--- NOTE: we use network with excessive amount of neurons, which guarantees
//--- almost exact reproduction of the training set. Generalization ability
//--- of such network is rather low, but we are not concerned with such
//--- questions in this basic demo.
CMLPTrainer trn;
CMultilayerPerceptronShell network;
CMLPReportShell rep;
//--- Training set:
//--- * one row corresponds to one record A*B=C in the multiplication table
//--- * first two columns store A and B, last column stores C
//--- [1 * 1 = 1]
//--- [1 * 2 = 2]
//--- [2 * 1 = 2]
//--- [2 * 2 = 4]
matrix<double> XY={{1,1,1},{1,2,2},{2,1,2},{2,2,4}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
//--- Network is created.
//--- Trainer object is created.
//--- Dataset is attached to trainer object.
CAlglib::MLPCreateTrainer(2,1,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreate1(2,5,1,network);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetDataset(trn,xy,4);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Network is trained with 5 restarts from random positions
CAlglib::MLPTrainNetwork(trn,network,5,rep);
//--- 2*2=?
double x[]={2,2};
double y[]={0};
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={4.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Regression problem with multiple outputs (2=>2) |
//+------------------------------------------------------------------+
void TEST_NN_Regr_N(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Network with 2 inputs and 2 outputs is trained to reproduce vector function:
//--- (x0,x1) => (x0+x1, x0*x1)
//--- Informally speaking, we want neural network to simultaneously calculate
//--- both sum of two numbers and their product.
//--- NOTE: we use network with excessive amount of neurons, which guarantees
//--- almost exact reproduction of the training set. Generalization ability
//--- of such network is rather low, but we are not concerned with such
//--- questions in this basic demo.
CMLPTrainer trn;
CMultilayerPerceptronShell network;
CMLPReportShell rep;
//--- Training set. One row corresponds to one record [A,B,A+B,A*B].
//--- [ 1 1 1+1 1*1 ]
//--- [ 1 2 1+2 1*2 ]
//--- [ 2 1 2+1 2*1 ]
//--- [ 2 2 2+2 2*2 ]
matrix<double> XY={{1,1,2,1},{1,2,3,2},{2,1,3,2},{2,2,4,4}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
//--- Network is created.
//--- Trainer object is created.
//--- Dataset is attached to trainer object.
CAlglib::MLPCreateTrainer(2,2,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreate1(2,5,2,network);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetDataset(trn,xy,4);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Network is trained with 5 restarts from random positions
CAlglib::MLPTrainNetwork(trn,network,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- 2+1=?
//--- 2*1=?
double x[]={2,1};
double y[]={0,0};
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={3.000,2.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Binary classification problem |
//+------------------------------------------------------------------+
void TEST_NN_Cls2(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Suppose that we want to classify numbers as positive (class 0) and negative
//--- (class 1). We have training set which includes several strictly positive
//--- or negative numbers - and zero.
//--- The problem is that we are not sure how to classify zero, so from time to
//--- time we mark it as positive or negative (with equal probability). Other
//--- numbers are marked in pure deterministic setting. How will neural network
//--- cope with such classification task?
//--- NOTE: we use network with excessive amount of neurons, which guarantees
//--- almost exact reproduction of the training set. Generalization ability
//--- of such network is rather low, but we are not concerned with such
//--- questions in this basic demo.
CMLPTrainer trn;
CMultilayerPerceptronShell network;
CMLPReportShell rep;
double x[]={0};
double y[]={0,0};
//--- Training set. One row corresponds to one record [A => class(A)].
//--- Classes are denoted by numbers from 0 to 1, where 0 corresponds to positive
//--- numbers and 1 to negative numbers.
//--- [ +1 0]
//--- [ +2 0]
//--- [ -1 1]
//--- [ -2 1]
//--- [ 0 0] !! sometimes we classify 0 as positive, sometimes as negative
//--- [ 0 1] !!
matrix<double> XY={{+1,0},{+2,0},{-1,1},{-2,1},{0,0},{0,1}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
//--- When we solve classification problems, everything is slightly different from
//--- the regression ones:
//--- 1. Network is created. Because we solve classification problem, we use
//--- mlpcreatec1() function instead of mlpcreate1(). This function creates
//--- classifier network with SOFTMAX-normalized outputs. This network returns
//--- vector of class membership probabilities which are normalized to be
//--- non-negative and sum to 1.0
//--- 2. We use mlpcreatetrainercls() function instead of mlpcreatetrainer() to
//--- create trainer object. Trainer object process dataset and neural network
//--- slightly differently to account for specifics of the classification
//--- problems.
//--- 3. Dataset is attached to trainer object. Note that dataset format is slightly
//--- different from one used for regression.
CAlglib::MLPCreateTrainerCls(1,2,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreateC1(1,5,2,network);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetDataset(trn,xy,6);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Network is trained with 5 restarts from random positions
CAlglib::MLPTrainNetwork(trn,network,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Test our neural network on strictly positive and strictly negative numbers.
//--- IMPORTANT! Classifier network returns class membership probabilities instead
//--- of class indexes. Network returns two values (probabilities) instead of one
//--- (class index).
//--- Thus, for +1 we expect to get [P0,P1] = [1,0], where P0 is probability that
//--- number is positive (belongs to class 0), and P1 is probability that number
//--- is negative (belongs to class 1).
//--- For -1 we expect to get [P0,P1] = [0,1]
//--- Following properties are guaranteed by network architecture:
//--- * P0>=0, P1>=0 non-negativity
//--- * P0+P1=1 normalization
x[0]=1;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={1.000,0.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
}
x[0]=-1;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={0.000,1.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
}
//--- But what our network will return for 0, which is between classes 0 and 1?
//--- In our dataset it has two different marks assigned (class 0 AND class 1).
//--- So network will return something average between class 0 and class 1:
//--- 0 => [0.5, 0.5]
x[0]=0;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0.500,0.500};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Multiclass classification problem |
//+------------------------------------------------------------------+
void TEST_NN_Cls3(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- Suppose that we want to classify numbers as positive (class 0) and negative
//--- (class 1). We also have one more class for zero (class 2).
//--- NOTE: we use network with excessive amount of neurons, which guarantees
//--- almost exact reproduction of the training set. Generalization ability
//--- of such network is rather low, but we are not concerned with such
//--- questions in this basic demo.
CMLPTrainer trn;
CMultilayerPerceptronShell network;
CMLPReportShell rep;
double x[]={0};
double y[]={0,0,0};
//--- Training set. One row corresponds to one record [A => class(A)].
//--- Classes are denoted by numbers from 0 to 2, where 0 corresponds to positive
//--- numbers, 1 to negative numbers, 2 to zero
//--- [ +1 0]
//--- [ +2 0]
//--- [ -1 1]
//--- [ -2 1]
//--- [ 0 2]
matrix<double> XY={{+1,0},{+2,0},{-1,1},{-2,1},{0,2}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
//--- When we solve classification problems, everything is slightly different from
//--- the regression ones:
//--- 1. Network is created. Because we solve classification problem, we use
//--- mlpcreatec1() function instead of mlpcreate1(). This function creates
//--- classifier network with SOFTMAX-normalized outputs. This network returns
//--- vector of class membership probabilities which are normalized to be
//--- non-negative and sum to 1.0
//--- 2. We use mlpcreatetrainercls() function instead of mlpcreatetrainer() to
//--- create trainer object. Trainer object process dataset and neural network
//--- slightly differently to account for specifics of the classification
//--- problems.
//--- 3. Dataset is attached to trainer object. Note that dataset format is slightly
//--- different from one used for regression.
CAlglib::MLPCreateTrainerCls(1,3,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreateC1(1,5,3,network);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetDataset(trn,xy,5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Network is trained with 5 restarts from random positions
CAlglib::MLPTrainNetwork(trn,network,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Test our neural network on strictly positive and strictly negative numbers.
//--- IMPORTANT! Classifier network returns class membership probabilities instead
//--- of class indexes. Network returns three values (probabilities) instead of one
//--- (class index).
//--- Thus, for +1 we expect to get [P0,P1,P2] = [1,0,0],
//--- for -1 we expect to get [P0,P1,P2] = [0,1,0],
//--- and for 0 we will get [P0,P1,P2] = [0,0,1].
//--- Following properties are guaranteed by network architecture:
//--- * P0>=0, P1>=0, P2>=0 non-negativity
//--- * P0+P1+P2=1 normalization
x[0]=1;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={1.000,0.000,0.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
}
x[0]=-1;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
{
double check[]={0.000,1.000,0.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
}
x[0]=0;
CAlglib::MLPProcess(network,x,y);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
double check[]={0.000,0.000,1.000};
_TestResult=_TestResult && Doc_Test_Real_Vector(y,check,0.05);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Advanced example on trainer object |
//+------------------------------------------------------------------+
void TEST_NN_TrainerObject(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<6; _spoil_scenario++)
{
//--- Trainer object is used to train network. It stores dataset, training settings,
//--- and other information which is NOT part of neural network. You should use
//--- trainer object as follows:
//--- (1) you create trainer object and specify task type (classification/regression)
//--- and number of inputs/outputs
//--- (2) you add dataset to the trainer object
//--- (3) you may change training settings (stopping criteria or weight decay)
//--- (4) finally, you may train one or more networks
//--- You may interleave stages 2...4 and repeat them many times. Trainer object
//--- remembers its internal state and can be used several times after its creation
//--- and initialization.
CMLPTrainer trn;
//--- Stage 1: object creation.
//--- We have to specify number of inputs and outputs. Trainer object can be used
//--- only for problems with same number of inputs/outputs as was specified during
//--- its creation.
//--- In case you want to train SOFTMAX-normalized network which solves classification
//--- problems, you must use another function to create trainer object:
//--- mlpcreatetrainercls().
//--- Below we create trainer object which can be used to train regression networks
//--- with 2 inputs and 1 output.
CAlglib::MLPCreateTrainer(2,1,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Stage 2: specification of the training set
//--- By default trainer object stores empty dataset. So to solve your non-empty problem
//--- you have to set dataset by passing to trainer dense or sparse matrix.
//--- One row of the matrix corresponds to one record A*B=C in the multiplication table.
//--- First two columns store A and B, last column stores C
//--- [1 * 1 = 1] [ 1 1 1 ]
//--- [1 * 2 = 2] [ 1 2 2 ]
//--- [2 * 1 = 2] = [ 2 1 2 ]
//--- [2 * 2 = 4] [ 2 2 4 ]
matrix<double> XY={{1,1,1},{1,2,2},{2,1,2},{2,2,4}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
CAlglib::MLPSetDataset(trn,xy,4);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Stage 3: modification of the training parameters.
//--- You may modify parameters like weights decay or stopping criteria:
//--- * we set moderate weight decay
//--- * we choose iterations limit as stopping condition (another condition - step size -
//--- is zero, which means than this condition is not active)
double wstep=0.000;
if(_spoil_scenario==3)
wstep=AL_NaN;
if(_spoil_scenario==4)
wstep=AL_POSINF;
if(_spoil_scenario==5)
wstep=AL_NEGINF;
int maxits=100;
CAlglib::MLPSetDecay(trn,0.01);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetCond(trn,wstep,maxits);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Stage 4: training.
//--- We will train several networks with different architecture using same trainer object.
//--- We may change training parameters or even dataset, so different networks are trained
//--- differently. But in this simple example we will train all networks with same settings.
//--- We create and train three networks:
//--- * network 1 has 2x1 architecture (2 inputs, no hidden neurons, 1 output)
//--- * network 2 has 2x5x1 architecture (2 inputs, 5 hidden neurons, 1 output)
//--- * network 3 has 2x5x5x1 architecture (2 inputs, two hidden layers, 1 output)
//--- NOTE: these networks solve regression problems. For classification problems you
//--- should use mlpcreatec0/c1/c2 to create neural networks which have SOFTMAX-
//--- normalized outputs.
CMultilayerPerceptronShell net1;
CMultilayerPerceptronShell net2;
CMultilayerPerceptronShell net3;
CMLPReportShell rep;
CAlglib::MLPCreate0(2,1,net1);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreate1(2,5,1,net2);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPCreate2(2,5,5,1,net3);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPTrainNetwork(trn,net1,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPTrainNetwork(trn,net2,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPTrainNetwork(trn,net3,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Early stopping ensembles |
//+------------------------------------------------------------------+
void TEST_NN_Ensembles_ES(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<3; _spoil_scenario++)
{
//--- This example shows how to train early stopping ensebles.
CMLPTrainer trn;
CMLPEnsembleShell ensemble;
CMLPReportShell rep;
//--- Training set: f(x)=1/(x^2+1)
//--- One row corresponds to one record [x,f(x)]
matrix<double> XY={{-2.0,0.2},{-1.6,0.3},{-1.3,0.4},{-1,0.5},{-0.6,0.7},{-0.3,0.9},{0,1},{2.0,0.2},{1.6,0.3},{1.3,0.4},{1,0.5},{0.6,0.7},{0.3,0.9}};
CMatrixDouble xy=XY;
if(_spoil_scenario==0)
Spoil_Matrix_By_Value(xy,AL_NaN);
if(_spoil_scenario==1)
Spoil_Matrix_By_Value(xy,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Matrix_By_Value(xy,AL_NEGINF);
//--- Trainer object is created.
//--- Dataset is attached to trainer object.
//--- NOTE: it is not good idea to use early stopping ensemble on sample
//--- as small as ours (13 examples). It is done for demonstration
//--- purposes only. Ensemble training algorithm won't find good
//--- solution on such small sample.
CAlglib::MLPCreateTrainer(1,1,trn);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPSetDataset(trn,xy,13);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- Ensemble is created and trained. Each of 50 network is trained
//--- with 5 restarts.
CAlglib::MLPECreate1(1,4,1,50,ensemble);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
CAlglib::MLPTrainEnsembleES(trn,ensemble,5,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| Monotone interpolation |
//+------------------------------------------------------------------+
void TEST_Spline1D_D_Monotone(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<10; _spoil_scenario++)
{
//--- Spline built witn spline1dbuildcubic() can be non-monotone even when
//--- Y-values form monotone sequence. Say, for x=[0,1,2] and y=[0,1,1]
//--- cubic spline will monotonically grow until x=1.5 and then start
//--- decreasing.
//--- That's why ALGLIB provides special spline construction function
//--- which builds spline which preserves monotonicity of the original
//--- dataset.
//--- NOTE: in case original dataset is non-monotonic, ALGLIB splits it
//--- into monotone subsequences and builds piecewise monotonic spline.
//
vector<double> X={ 0,1,2 };
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Adding_Element(x);
if(_spoil_scenario==4)
Spoil_Vector_By_Deleting_Element(x);
vector<double> Y={ 0,1,1 };
CRowDouble y=Y;
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==8)
Spoil_Vector_By_Adding_Element(y);
if(_spoil_scenario==9)
Spoil_Vector_By_Deleting_Element(y);
CSpline1DInterpolantShell s;
//--- build spline
CAlglib::Spline1DBuildMonotone(x,y,s);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
//--- calculate S at x = [-0.5, 0.0, 0.5, 1.0, 1.5, 2.0]
//--- you may see that spline is really monotonic
double v=CAlglib::Spline1DCalc(s,-0.5);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,0.0000,0.00005);
v=CAlglib::Spline1DCalc(s,0.0);
_TestResult=_TestResult && Doc_Test_Real(v,0.0000,0.00005);
v=CAlglib::Spline1DCalc(s,+0.5);
_TestResult=_TestResult && Doc_Test_Real(v,0.5000,0.00005);
v=CAlglib::Spline1DCalc(s,1.0);
_TestResult=_TestResult && Doc_Test_Real(v,1.0000,0.00005);
v=CAlglib::Spline1DCalc(s,1.5);
_TestResult=_TestResult && Doc_Test_Real(v,1.0000,0.00005);
v=CAlglib::Spline1DCalc(s,2.0);
_TestResult=_TestResult && Doc_Test_Real(v,1.0000,0.00005);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| 4-parameter logistic fitting |
//+------------------------------------------------------------------+
void TEST_LSFit_T_4pl(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<8; _spoil_scenario++)
{
vector<double> X={ 1,2,3,4,5,6,7,8 };
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
vector<double> Y={ 0.06313223,0.44552624,0.61838364,0.71385108,0.77345838,0.81383140,0.84280033,0.86449822 };
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
int n=8;
double a;
double b;
double c;
double d;
CLSFitReportShell rep;
//--- Test logisticfit4() on carefully designed data with a priori known answer.
CAlglib::LogisticFit4(x,y,n,a,b,c,d,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(a,-1.000,0.01);
_TestResult=_TestResult && Doc_Test_Real(b,1.200,0.01);
_TestResult=_TestResult && Doc_Test_Real(c,0.900,0.01);
_TestResult=_TestResult && Doc_Test_Real(d,1.000,0.01);
//--- Evaluate model at point x=0.5
double v;
v=CAlglib::LogisticCalc4(0.5,a,b,c,d);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(v,-0.33874308,0.001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+
//| 5-parameter logistic fitting |
//+------------------------------------------------------------------+
void TEST_LSFit_T_5pl(int &_spoil_scenario,bool &_TestResult,bool &_TotalResult)
{
_TestResult=true;
for(_spoil_scenario=-1; _spoil_scenario<8; _spoil_scenario++)
{
vector<double> X={ 1,2,3,4,5,6,7,8 };
CRowDouble x=X;
if(_spoil_scenario==0)
Spoil_Vector_By_Value(x,AL_NaN);
if(_spoil_scenario==1)
Spoil_Vector_By_Value(x,AL_POSINF);
if(_spoil_scenario==2)
Spoil_Vector_By_Value(x,AL_NEGINF);
if(_spoil_scenario==3)
Spoil_Vector_By_Deleting_Element(x);
vector<double> Y={ 0.1949776139,0.5710060208,0.726002637,0.8060434158,0.8534547965,0.8842071579,0.9054773317,0.9209088299 };
CRowDouble y=Y;
if(_spoil_scenario==4)
Spoil_Vector_By_Value(y,AL_NaN);
if(_spoil_scenario==5)
Spoil_Vector_By_Value(y,AL_POSINF);
if(_spoil_scenario==6)
Spoil_Vector_By_Value(y,AL_NEGINF);
if(_spoil_scenario==7)
Spoil_Vector_By_Deleting_Element(y);
int n=8;
double a;
double b;
double c;
double d;
double g;
CLSFitReportShell rep;
//--- Test logisticfit5() on carefully designed data with a priori known answer.
CAlglib::LogisticFit5(x,y,n,a,b,c,d,g,rep);
//--- handling exceptions
if(!Func_spoil_scenario(_spoil_scenario,_TestResult))
continue;
_TestResult=_TestResult && Doc_Test_Real(a,-1.000,0.01);
_TestResult=_TestResult && Doc_Test_Real(b,1.200,0.01);
_TestResult=_TestResult && Doc_Test_Real(c,0.900,0.01);
_TestResult=_TestResult && Doc_Test_Real(d,1.000,0.01);
_TestResult=_TestResult && Doc_Test_Real(g,1.200,0.01);
//--- Evaluate model at point x=0.5
double v;
v=CAlglib::LogisticCalc5(0.5,a,b,c,d,g);
_TestResult=_TestResult && Doc_Test_Real(v,-0.2354656824,0.001);
_TestResult=_TestResult && (_spoil_scenario==-1);
}
if(!_TestResult)
PrintFormat("%-32s FAILED",__FUNCTION__);
_TotalResult=_TotalResult && _TestResult;
}
//+------------------------------------------------------------------+