43 lines
1.3 KiB
Python
43 lines
1.3 KiB
Python
|
# The script shows the scatter plot of the Iris dataset features
|
||
|
# Copyright 2023, MetaQuotes Ltd.
|
||
|
# https://mql5.com
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
from sklearn import datasets
|
||
|
|
||
|
# load the Iris dataset
|
||
|
iris = datasets.load_iris()
|
||
|
X = iris.data
|
||
|
y = iris.target
|
||
|
|
||
|
# extract sepal length and sepal width (the first two features)
|
||
|
sepal_length = X[:, 0]
|
||
|
sepal_width = X[:, 1]
|
||
|
|
||
|
# create a scatter plot
|
||
|
plt.figure(figsize=(8, 6))
|
||
|
plt.scatter(sepal_length, sepal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
|
||
|
plt.xlabel('Sepal Length (cm)')
|
||
|
plt.ylabel('Sepal Width (cm)')
|
||
|
plt.title('Scatter Plot for Sepal Length and Sepal Width')
|
||
|
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
|
||
|
plt.show()
|
||
|
|
||
|
# save the scatter plot to a file (optional)
|
||
|
# plt.savefig('scatter_plot_sepal_length_width.png')
|
||
|
|
||
|
# Extract petal length and petal width (the third and fourth features)
|
||
|
petal_length = X[:, 2]
|
||
|
petal_width = X[:, 3]
|
||
|
|
||
|
# create a scatter plot
|
||
|
plt.figure(figsize=(8, 6))
|
||
|
plt.scatter(petal_length, petal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
|
||
|
plt.xlabel('Petal Length (cm)')
|
||
|
plt.ylabel('Petal Width (cm)')
|
||
|
plt.title('Scatter Plot for Petal Length and Petal Width')
|
||
|
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
|
||
|
plt.show()
|
||
|
|
||
|
# save the scatter plot to a file (optional)
|
||
|
# plt.savefig('scatter_plot_petal_length_width.png')
|