Scikit.Classification.ONNX/Python/Iris.py

43 lines
1.3 KiB
Python
Raw Permalink Normal View History

2025-05-30 16:23:21 +02:00
# The script shows the scatter plot of the Iris dataset features
# Copyright 2023, MetaQuotes Ltd.
# https://mql5.com
import matplotlib.pyplot as plt
from sklearn import datasets
# load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
# extract sepal length and sepal width (the first two features)
sepal_length = X[:, 0]
sepal_width = X[:, 1]
# create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(sepal_length, sepal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Sepal Length (cm)')
plt.ylabel('Sepal Width (cm)')
plt.title('Scatter Plot for Sepal Length and Sepal Width')
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
plt.show()
# save the scatter plot to a file (optional)
# plt.savefig('scatter_plot_sepal_length_width.png')
# Extract petal length and petal width (the third and fourth features)
petal_length = X[:, 2]
petal_width = X[:, 3]
# create a scatter plot
plt.figure(figsize=(8, 6))
plt.scatter(petal_length, petal_width, c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Petal Length (cm)')
plt.ylabel('Petal Width (cm)')
plt.title('Scatter Plot for Petal Length and Petal Width')
plt.colorbar(label='Iris Species', ticks=[0, 1, 2])
plt.show()
# save the scatter plot to a file (optional)
# plt.savefig('scatter_plot_petal_length_width.png')