NeuroBook/Include/realization/neurondropout.mqh

278 lines
23 KiB
MQL5
Raw Permalink Normal View History

2025-05-30 16:12:30 +02:00
<EFBFBD><EFBFBD>//+------------------------------------------------------------------+
//| NeuronDropout.mqh |
//| Copyright 2021, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2021, MetaQuotes Ltd."
#property link "https://www.mql5.com"
//+------------------------------------------------------------------+
//| Connect libraries |
//+------------------------------------------------------------------+
#include "neuronbase.mqh"
//+------------------------------------------------------------------+
//| Class CNeuronDropout |
//| Purpose: Dropout method implementation class |
//+------------------------------------------------------------------+
class CNeuronDropout : public CNeuronBase
{
protected:
TYPE m_dOutProbability;
int m_iOutNumber;
TYPE m_dInitValue;
CBufferType m_cDropOutMultiplier;
public:
CNeuronDropout(void);
~CNeuronDropout(void);
//---
virtual bool Init(const CLayerDescription *desc) override;
virtual bool FeedForward(CNeuronBase *prevLayer) override;
virtual bool CalcHiddenGradient(CNeuronBase *prevLayer) override;
virtual bool CalcDeltaWeights(CNeuronBase *prevLayer, bool read)
override { return true; }
virtual bool UpdateWeights(int batch_size, TYPE learningRate,
VECTOR &Beta, VECTOR &Lambda) override { return true; }
//--- file handling methods
virtual bool Save(const int file_handle) override;
virtual bool Load(const int file_handle) override;
//--- object identification method
virtual int Type(void) override const { return(defNeuronDropout); }
};
//+------------------------------------------------------------------+
//| Class constructor |
//+------------------------------------------------------------------+
CNeuronDropout::CNeuronDropout(void) : m_dInitValue(1.0),
m_dOutProbability(0),
m_iOutNumber(0)
{
m_bTrain = false;
}
//+------------------------------------------------------------------+
//| Class destructor |
//+------------------------------------------------------------------+
CNeuronDropout::~CNeuronDropout(void)
{
}
//+------------------------------------------------------------------+
//| Class initialization method |
//+------------------------------------------------------------------+
bool CNeuronDropout::Init(const CLayerDescription *description)
{
//--- control block
if(!description || description.count != description.window)
return false;
//--- call of the method of the parent class
CLayerDescription *temp = new CLayerDescription();
if(!temp || !temp.Copy(description))
return false;
temp.window = 0;
if(!CNeuronBase::Init(temp))
return false;
delete temp;
//--- calculate coefficients
m_dOutProbability = (TYPE)MathMin(description.probability, 0.9);
if(m_dOutProbability < 0)
return false;
m_iOutNumber = (int)(m_cOutputs.Total() * m_dOutProbability);
m_dInitValue = (TYPE)(1.0 / (1.0 - m_dOutProbability));
//--- initiate the masking buffer
if(!m_cDropOutMultiplier.BufferInit(m_cOutputs.Rows(), m_cOutputs.Cols(), m_dInitValue))
return false;
m_bTrain = true;
//---
return true;
}
//+------------------------------------------------------------------+
//| Feed-forward method |
//+------------------------------------------------------------------+
bool CNeuronDropout::FeedForward(CNeuronBase *prevLayer)
{
//--- control block
if(!prevLayer || !prevLayer.GetOutputs() || !m_cOutputs)
return false;
//--- generate a data masking tensor
ulong total = m_cOutputs.Total();
if(!m_cDropOutMultiplier.m_mMatrix.Fill(m_dInitValue))
return false;
for(int i = 0; i < m_iOutNumber; i++)
{
int pos = (int)(MathRand() * MathRand() / MathPow(32767.0, 2) * total);
if(m_cDropOutMultiplier.m_mMatrix.Flat(pos) == 0)
{
i--;
continue;
}
if(!m_cDropOutMultiplier.m_mMatrix.Flat(pos, 0))
return false;
}
//--- branching of the algorithm depending on the device used for performing operations
if(!m_cOpenCL)
{
//--- check the operating mode flag
if(!m_bTrain)
m_cOutputs.m_mMatrix = prevLayer.GetOutputs().m_mMatrix;
else
m_cOutputs.m_mMatrix = prevLayer.GetOutputs().m_mMatrix * m_cDropOutMultiplier.m_mMatrix;
}
else // OpenCL block
{
//--- check the operating mode flag
if(!m_bTrain)
{
//--- check data buffers
CBufferType *inputs = prevLayer.GetOutputs();
if(inputs.GetIndex() < 0)
return false;
if(m_cOutputs.GetIndex() < 0)
return false;
//--- pass parameters to the kernel
if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation, def_activ_inputs, inputs.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation, def_activ_outputs, m_cOutputs.GetIndex()))
return false;
if(!m_cOpenCL.SetArgument(def_k_LineActivation, def_activ_param_a, (TYPE)1))
return false;
if(!m_cOpenCL.SetArgument(def_k_LineActivation, def_activ_param_b, (TYPE)0))
return false;
uint offset[] = {0};
uint NDRange[] = {(uint)m_cOutputs.Total()};
if(!m_cOpenCL.Execute(def_k_LineActivation, 1, offset, NDRange))
return false;
}
else
{
//--- check data buffers
CBufferType *inputs = prevLayer.GetOutputs();
if(inputs.GetIndex() < 0)
return false;
if(!m_cDropOutMultiplier.BufferCreate(m_cOpenCL))
return false;
if(m_cOutputs.GetIndex() < 0)
return false;
//--- pass parameters to the kernel
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_inputs, inputs.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_mask, m_cDropOutMultiplier.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_outputs, m_cOutputs.GetIndex()))
return false;
if(!m_cOpenCL.SetArgument(def_k_MaskMult, def_mask_total, total))
return false;
//--- place to execution queue
int off_set[] = {0};
int NDRange[] = { (int)(total + 3) / 4};
if(!m_cOpenCL.Execute(def_k_MaskMult, 1, off_set, NDRange))
return false;
}
}
//---
return true;
}
//+------------------------------------------------------------------+
//| Method for propagating gradient through hidden layer |
//+------------------------------------------------------------------+
bool CNeuronDropout::CalcHiddenGradient(CNeuronBase *prevLayer)
{
//--- control block
if(!prevLayer || !prevLayer.GetGradients() ||
!m_cGradients)
return false;
//--- branching of the algorithm depending on the device used for performing operations
ulong total = m_cOutputs.Total();
if(!m_cOpenCL)
{
//--- check the operating mode flag
if(!m_bTrain)
prevLayer.GetGradients().m_mMatrix = m_cGradients.m_mMatrix;
else
prevLayer.GetGradients().m_mMatrix = m_cGradients.m_mMatrix * m_cDropOutMultiplier.m_mMatrix;
}
else // OpenCL block
{
//--- check the operating mode flag
if(!m_bTrain)
{
//--- check data buffers
CBufferType *grad = prevLayer.GetGradients();
if(grad.GetIndex() < 0)
return false;
if(m_cGradients.GetIndex() < 0)
return false;
//--- pass parameters to the kernel
if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation, def_activ_inputs, m_cGradients.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_LineActivation, def_activ_outputs, grad.GetIndex()))
return false;
if(!m_cOpenCL.SetArgument(def_k_LineActivation, def_activ_param_a, (TYPE)1))
return false;
if(!m_cOpenCL.SetArgument(def_k_LineActivation, def_activ_param_b, (TYPE)0))
return false;
uint offset[] = {0};
uint NDRange[] = {(uint)m_cOutputs.Total()};
if(!m_cOpenCL.Execute(def_k_LineActivation, 1, offset, NDRange))
return false;
}
else
{
//--- check data buffers
CBufferType* prev = prevLayer.GetGradients();
if(prev.GetIndex() < 0)
return false;
if(m_cDropOutMultiplier.GetIndex() < 0)
return false;
if(m_cGradients.GetIndex() < 0)
return false;
//--- pass parameters to the kernel
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_inputs, m_cGradients.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_mask, m_cDropOutMultiplier.GetIndex()))
return false;
if(!m_cOpenCL.SetArgumentBuffer(def_k_MaskMult, def_mask_outputs, prev.GetIndex()))
return false;
if(!m_cOpenCL.SetArgument(def_k_MaskMult, def_mask_total, total))
return false;
//--- place to execution queue
int off_set[] = {0};
int NDRange[] = { (int)(total + 3) / 4 };
if(!m_cOpenCL.Execute(def_k_MaskMult, 1, off_set, NDRange))
return false;
}
}
//---
return true;
}
//+------------------------------------------------------------------+
//| Method for saving class elements to a file |
//+------------------------------------------------------------------+
bool CNeuronDropout::Save(const int file_handle)
{
//--- call of the method of the parent class
if(!CNeuronBase::Save(file_handle))
return false;
//--- save the element dropout probability constant
if(FileWriteDouble(file_handle, m_dOutProbability) <= 0)
return false;
//---
return true;
}
//+------------------------------------------------------------------+
//| Method for restoring the class from saved data |
//+------------------------------------------------------------------+
bool CNeuronDropout::Load(const int file_handle)
{
//--- call of the method of the parent class
if(!CNeuronBase::Load(file_handle))
return false;
//--- read and restore constants
m_dOutProbability = (TYPE)FileReadDouble(file_handle);
m_iOutNumber = (int)(m_cOutputs.Total() * m_dOutProbability);
m_dInitValue = (TYPE)(1.0 / (1.0 - m_dOutProbability));
//--- initialize the data masking buffer
if(!m_cDropOutMultiplier.BufferInit(m_cOutputs.Rows(), m_cOutputs.Cols(), m_dInitValue))
return false;
//---
return true;
}
//+------------------------------------------------------------------+