223 lines
10 KiB
Python
223 lines
10 KiB
Python
|
# -------------------------------------------------------#
|
||
|
# Script for the creation and comparative testing of #
|
||
|
# a fully connected perceptron model with different #
|
||
|
# convolutional models using the same dataset. #
|
||
|
# The script creates three models: #
|
||
|
# - fully connected perceptron with three hidden layers #
|
||
|
# & regularization. #
|
||
|
# - 1-dimensional convolutional layer #
|
||
|
# - 2-dimensional convolutional layer #
|
||
|
# When training models, from training dataset, script #
|
||
|
# allocates 1% to validate the outputs. #
|
||
|
# After training, the script tests the performance #
|
||
|
# of the model on a test dataset (separate data file) #
|
||
|
# -------------------------------------------------------#
|
||
|
# Import Libraries
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
import matplotlib as mp
|
||
|
import matplotlib.pyplot as plt
|
||
|
import matplotlib.font_manager as fm
|
||
|
import MetaTrader5 as mt5
|
||
|
|
||
|
# Add fonts
|
||
|
font_list=fm.findSystemFonts()
|
||
|
for f in font_list:
|
||
|
if(f.__contains__('ClearSans')):
|
||
|
fm.fontManager.addfont(f)
|
||
|
|
||
|
# Set parameters for output graphs
|
||
|
mp.rcParams.update({'font.family':'serif',
|
||
|
'font.serif':'Clear Sans',
|
||
|
'axes.titlesize': 'x-large',
|
||
|
'axes.labelsize':'medium',
|
||
|
'xtick.labelsize':'small',
|
||
|
'ytick.labelsize':'small',
|
||
|
'legend.fontsize':'small',
|
||
|
'figure.figsize':[6.0,4.0],
|
||
|
'axes.titlecolor': '#707070',
|
||
|
'axes.labelcolor': '#707070',
|
||
|
'axes.edgecolor': '#707070',
|
||
|
'xtick.labelcolor': '#707070',
|
||
|
'ytick.labelcolor': '#707070',
|
||
|
'xtick.color': '#707070',
|
||
|
'ytick.color': '#707070',
|
||
|
'text.color': '#707070',
|
||
|
'lines.linewidth': 0.8,
|
||
|
'axes.linewidth': 0.5
|
||
|
})
|
||
|
|
||
|
# Load training dataset
|
||
|
if not mt5.initialize():
|
||
|
print("initialize() failed, error code =",mt5.last_error())
|
||
|
quit()
|
||
|
|
||
|
path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')
|
||
|
mt5.shutdown()
|
||
|
filename = os.path.join(path,'study_data.csv')
|
||
|
data = np.asarray( pd.read_table(filename,
|
||
|
sep=',',
|
||
|
header=None,
|
||
|
skipinitialspace=True,
|
||
|
encoding='utf-8',
|
||
|
float_precision='high',
|
||
|
dtype=np.float64,
|
||
|
low_memory=False))
|
||
|
|
||
|
# Split training dataset to input data and target
|
||
|
inputs=data.shape[1]-2
|
||
|
targerts=2
|
||
|
train_data=data[:,0:inputs]
|
||
|
train_target=data[:,inputs:]
|
||
|
|
||
|
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=10)
|
||
|
|
||
|
# Creating a perceptron model with three hidden layers and regularization
|
||
|
model1 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(targerts, activation=tf.nn.tanh)
|
||
|
])
|
||
|
model1.summary()
|
||
|
#keras.utils.plot_model(model1, show_shapes=True)
|
||
|
|
||
|
# Add a 1D convolutional layer to the model
|
||
|
model2 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
||
|
# Reformat tensor to a 3-dimensional one. Specify 2 dimensions as 3rd one is defined by batch size
|
||
|
keras.layers.Reshape((-1,4)),
|
||
|
# Convolutional later with 8 filters
|
||
|
keras.layers.Conv1D(8,1,1,activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
# Pooling layer
|
||
|
keras.layers.MaxPooling1D(2,strides=1),
|
||
|
# Reformat tensor to a 2-dimensional one for fully connected layers
|
||
|
keras.layers.Flatten(),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(targerts, activation=tf.nn.tanh)
|
||
|
])
|
||
|
model2.summary()
|
||
|
#keras.utils.plot_model(model2, show_shapes=True)
|
||
|
|
||
|
# Replace the convolutional layer in the model with a 2-dimensional one
|
||
|
model3 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
||
|
# Reformat tensor into 4-dimensional. Specify 3 dimensions as the 4th dimension is determined by the batch size
|
||
|
keras.layers.Reshape((-1,4,1)),
|
||
|
# Convolutional later with 8 filters
|
||
|
keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
# Pooling layer
|
||
|
keras.layers.MaxPooling2D((2,1),strides=1),
|
||
|
# Reformat tensor to a 2-dimensional one for fully connected layers
|
||
|
keras.layers.Flatten(),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
|
||
|
keras.layers.Dense(targerts, activation=tf.nn.tanh)
|
||
|
])
|
||
|
model3.summary()
|
||
|
#keras.utils.plot_model(model3, show_shapes=True)
|
||
|
|
||
|
model1.compile(optimizer='Adam',
|
||
|
loss='mean_squared_error',
|
||
|
metrics=['accuracy'])
|
||
|
history1 = model1.fit(train_data, train_target,
|
||
|
epochs=500, batch_size=1000,
|
||
|
callbacks=[callback],
|
||
|
verbose=2,
|
||
|
validation_split=0.01,
|
||
|
shuffle=True)
|
||
|
model1.save(os.path.join(path,'convolution1.h5'))
|
||
|
|
||
|
model2.compile(optimizer='Adam',
|
||
|
loss='mean_squared_error',
|
||
|
metrics=['accuracy'])
|
||
|
history2 = model2.fit(train_data, train_target,
|
||
|
epochs=500, batch_size=1000,
|
||
|
callbacks=[callback],
|
||
|
verbose=2,
|
||
|
validation_split=0.01,
|
||
|
shuffle=True)
|
||
|
model2.save(os.path.join(path,'convolution2.h5'))
|
||
|
|
||
|
model3.compile(optimizer='Adam',
|
||
|
loss='mean_squared_error',
|
||
|
metrics=['accuracy'])
|
||
|
history3 = model3.fit(train_data, train_target,
|
||
|
epochs=500, batch_size=1000,
|
||
|
callbacks=[callback],
|
||
|
verbose=2,
|
||
|
validation_split=0.01,
|
||
|
shuffle=True)
|
||
|
model3.save(os.path.join(path,'convolution3.h5'))
|
||
|
|
||
|
# Render model training results
|
||
|
plt.figure()
|
||
|
plt.plot(history1.history['loss'], label='Perceptron train')
|
||
|
plt.plot(history1.history['val_loss'], label='Perceptron validation')
|
||
|
plt.plot(history2.history['loss'], label='Conv1D train')
|
||
|
plt.plot(history2.history['val_loss'], label='Conv1D validation')
|
||
|
plt.plot(history3.history['loss'], label='Conv2D train')
|
||
|
plt.plot(history3.history['val_loss'], label='Conv2D validation')
|
||
|
plt.ylabel('$MSE$ $loss$')
|
||
|
plt.xlabel('$Epochs$')
|
||
|
plt.title('Model training dynamics')
|
||
|
plt.legend(loc='upper right',ncol=3)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.plot(history1.history['accuracy'], label='Perceptron train')
|
||
|
plt.plot(history1.history['val_accuracy'], label='Perceptron validation')
|
||
|
plt.plot(history2.history['accuracy'], label='Conv1D train')
|
||
|
plt.plot(history2.history['val_accuracy'], label='Conv1D validation')
|
||
|
plt.plot(history3.history['accuracy'], label='Conv2D train')
|
||
|
plt.plot(history3.history['val_accuracy'], label='Conv2D validation')
|
||
|
plt.ylabel('$Accuracy$')
|
||
|
plt.xlabel('$Epochs$')
|
||
|
plt.title('Model training dynamics')
|
||
|
plt.legend(loc='lower right',ncol=3)
|
||
|
|
||
|
# Load testing dataset
|
||
|
test_filename = os.path.join(path,'test_data.csv')
|
||
|
test = np.asarray( pd.read_table(test_filename,
|
||
|
sep=',',
|
||
|
header=None,
|
||
|
skipinitialspace=True,
|
||
|
encoding='utf-8',
|
||
|
float_precision='high',
|
||
|
dtype=np.float64,
|
||
|
low_memory=False))
|
||
|
# Split test dataset to input data and target
|
||
|
test_data=test[:,0:inputs]
|
||
|
test_target=test[:,inputs:]
|
||
|
|
||
|
# Check model results on a test dataset
|
||
|
test_loss1, test_acc1 = model1.evaluate(test_data, test_target, verbose=2)
|
||
|
test_loss2, test_acc2 = model2.evaluate(test_data, test_target, verbose=2)
|
||
|
test_loss3, test_acc3 = model3.evaluate(test_data, test_target, verbose=2)
|
||
|
|
||
|
# Log testing results
|
||
|
print('Perceptron model')
|
||
|
print('Test accuracy:', test_acc1)
|
||
|
print('Test loss:', test_loss1)
|
||
|
|
||
|
print('Conv1D model')
|
||
|
print('Test accuracy:', test_acc2)
|
||
|
print('Test loss:', test_loss2)
|
||
|
|
||
|
print('Conv2D model')
|
||
|
print('Test accuracy:', test_acc3)
|
||
|
print('Test loss:', test_loss3)
|
||
|
|
||
|
plt.figure()
|
||
|
plt.bar(['Perceptron','Conv1D', 'Conv2D'],[test_loss1,test_loss2,test_loss3])
|
||
|
plt.ylabel('$MSE$ $loss$')
|
||
|
plt.title('Test results')
|
||
|
plt.figure()
|
||
|
plt.bar(['Perceptron','Conv1D', 'Conv2D'],[test_acc1,test_acc2,test_acc3])
|
||
|
plt.ylabel('$Accuracy$')
|
||
|
plt.title('Test results')
|
||
|
|
||
|
plt.show()
|