NeuroBook/Scripts/convolution/convolution.py

223 lines
10 KiB
Python
Raw Permalink Normal View History

2025-05-30 16:12:30 +02:00
# -------------------------------------------------------#
# Script for the creation and comparative testing of #
# a fully connected perceptron model with different #
# convolutional models using the same dataset. #
# The script creates three models: #
# - fully connected perceptron with three hidden layers #
# & regularization. #
# - 1-dimensional convolutional layer #
# - 2-dimensional convolutional layer #
# When training models, from training dataset, script #
# allocates 1% to validate the outputs. #
# After training, the script tests the performance #
# of the model on a test dataset (separate data file) #
# -------------------------------------------------------#
# Import Libraries
import os
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib as mp
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
import MetaTrader5 as mt5
# Add fonts
font_list=fm.findSystemFonts()
for f in font_list:
if(f.__contains__('ClearSans')):
fm.fontManager.addfont(f)
# Set parameters for output graphs
mp.rcParams.update({'font.family':'serif',
'font.serif':'Clear Sans',
'axes.titlesize': 'x-large',
'axes.labelsize':'medium',
'xtick.labelsize':'small',
'ytick.labelsize':'small',
'legend.fontsize':'small',
'figure.figsize':[6.0,4.0],
'axes.titlecolor': '#707070',
'axes.labelcolor': '#707070',
'axes.edgecolor': '#707070',
'xtick.labelcolor': '#707070',
'ytick.labelcolor': '#707070',
'xtick.color': '#707070',
'ytick.color': '#707070',
'text.color': '#707070',
'lines.linewidth': 0.8,
'axes.linewidth': 0.5
})
# Load training dataset
if not mt5.initialize():
print("initialize() failed, error code =",mt5.last_error())
quit()
path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')
mt5.shutdown()
filename = os.path.join(path,'study_data.csv')
data = np.asarray( pd.read_table(filename,
sep=',',
header=None,
skipinitialspace=True,
encoding='utf-8',
float_precision='high',
dtype=np.float64,
low_memory=False))
# Split training dataset to input data and target
inputs=data.shape[1]-2
targerts=2
train_data=data[:,0:inputs]
train_target=data[:,inputs:]
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=10)
# Creating a perceptron model with three hidden layers and regularization
model1 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(targerts, activation=tf.nn.tanh)
])
model1.summary()
#keras.utils.plot_model(model1, show_shapes=True)
# Add a 1D convolutional layer to the model
model2 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
# Reformat tensor to a 3-dimensional one. Specify 2 dimensions as 3rd one is defined by batch size
keras.layers.Reshape((-1,4)),
# Convolutional later with 8 filters
keras.layers.Conv1D(8,1,1,activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
# Pooling layer
keras.layers.MaxPooling1D(2,strides=1),
# Reformat tensor to a 2-dimensional one for fully connected layers
keras.layers.Flatten(),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(targerts, activation=tf.nn.tanh)
])
model2.summary()
#keras.utils.plot_model(model2, show_shapes=True)
# Replace the convolutional layer in the model with a 2-dimensional one
model3 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
# Reformat tensor into 4-dimensional. Specify 3 dimensions as the 4th dimension is determined by the batch size
keras.layers.Reshape((-1,4,1)),
# Convolutional later with 8 filters
keras.layers.Conv2D(8,(3,1),1,activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
# Pooling layer
keras.layers.MaxPooling2D((2,1),strides=1),
# Reformat tensor to a 2-dimensional one for fully connected layers
keras.layers.Flatten(),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(40, activation=tf.nn.swish, kernel_regularizer=keras.regularizers.l1_l2(l1=1e-7, l2=1e-5)),
keras.layers.Dense(targerts, activation=tf.nn.tanh)
])
model3.summary()
#keras.utils.plot_model(model3, show_shapes=True)
model1.compile(optimizer='Adam',
loss='mean_squared_error',
metrics=['accuracy'])
history1 = model1.fit(train_data, train_target,
epochs=500, batch_size=1000,
callbacks=[callback],
verbose=2,
validation_split=0.01,
shuffle=True)
model1.save(os.path.join(path,'convolution1.h5'))
model2.compile(optimizer='Adam',
loss='mean_squared_error',
metrics=['accuracy'])
history2 = model2.fit(train_data, train_target,
epochs=500, batch_size=1000,
callbacks=[callback],
verbose=2,
validation_split=0.01,
shuffle=True)
model2.save(os.path.join(path,'convolution2.h5'))
model3.compile(optimizer='Adam',
loss='mean_squared_error',
metrics=['accuracy'])
history3 = model3.fit(train_data, train_target,
epochs=500, batch_size=1000,
callbacks=[callback],
verbose=2,
validation_split=0.01,
shuffle=True)
model3.save(os.path.join(path,'convolution3.h5'))
# Render model training results
plt.figure()
plt.plot(history1.history['loss'], label='Perceptron train')
plt.plot(history1.history['val_loss'], label='Perceptron validation')
plt.plot(history2.history['loss'], label='Conv1D train')
plt.plot(history2.history['val_loss'], label='Conv1D validation')
plt.plot(history3.history['loss'], label='Conv2D train')
plt.plot(history3.history['val_loss'], label='Conv2D validation')
plt.ylabel('$MSE$ $loss$')
plt.xlabel('$Epochs$')
plt.title('Model training dynamics')
plt.legend(loc='upper right',ncol=3)
plt.figure()
plt.plot(history1.history['accuracy'], label='Perceptron train')
plt.plot(history1.history['val_accuracy'], label='Perceptron validation')
plt.plot(history2.history['accuracy'], label='Conv1D train')
plt.plot(history2.history['val_accuracy'], label='Conv1D validation')
plt.plot(history3.history['accuracy'], label='Conv2D train')
plt.plot(history3.history['val_accuracy'], label='Conv2D validation')
plt.ylabel('$Accuracy$')
plt.xlabel('$Epochs$')
plt.title('Model training dynamics')
plt.legend(loc='lower right',ncol=3)
# Load testing dataset
test_filename = os.path.join(path,'test_data.csv')
test = np.asarray( pd.read_table(test_filename,
sep=',',
header=None,
skipinitialspace=True,
encoding='utf-8',
float_precision='high',
dtype=np.float64,
low_memory=False))
# Split test dataset to input data and target
test_data=test[:,0:inputs]
test_target=test[:,inputs:]
# Check model results on a test dataset
test_loss1, test_acc1 = model1.evaluate(test_data, test_target, verbose=2)
test_loss2, test_acc2 = model2.evaluate(test_data, test_target, verbose=2)
test_loss3, test_acc3 = model3.evaluate(test_data, test_target, verbose=2)
# Log testing results
print('Perceptron model')
print('Test accuracy:', test_acc1)
print('Test loss:', test_loss1)
print('Conv1D model')
print('Test accuracy:', test_acc2)
print('Test loss:', test_loss2)
print('Conv2D model')
print('Test accuracy:', test_acc3)
print('Test loss:', test_loss3)
plt.figure()
plt.bar(['Perceptron','Conv1D', 'Conv2D'],[test_loss1,test_loss2,test_loss3])
plt.ylabel('$MSE$ $loss$')
plt.title('Test results')
plt.figure()
plt.bar(['Perceptron','Conv1D', 'Conv2D'],[test_acc1,test_acc2,test_acc3])
plt.ylabel('$Accuracy$')
plt.title('Test results')
plt.show()