532 lines
43 KiB
MQL5
532 lines
43 KiB
MQL5
//+------------------------------------------------------------------+
|
|
//| NeuronMHAttention.mqh |
|
|
//| Copyright 2021, MetaQuotes Ltd. |
|
|
//| https://www.mql5.com |
|
|
//+------------------------------------------------------------------+
|
|
#property copyright "Copyright 2021, MetaQuotes Ltd."
|
|
#property link "https://www.mql5.com"
|
|
//+------------------------------------------------------------------+
|
|
//| Connect libraries |
|
|
//+------------------------------------------------------------------+
|
|
#include "neuronattention.mqh"
|
|
//+------------------------------------------------------------------+
|
|
//| Class CNeuronMHAttention |
|
|
//| Purpose: Class for implementing the multi-head attention block |
|
|
//+------------------------------------------------------------------+
|
|
class CNeuronMHAttention : public CNeuronAttention
|
|
{
|
|
protected:
|
|
CNeuronConv m_cW0;
|
|
|
|
int m_iHeads;
|
|
|
|
public:
|
|
CNeuronMHAttention(void);
|
|
~CNeuronMHAttention(void);
|
|
//---
|
|
virtual bool Init(const CLayerDescription *desc) override;
|
|
virtual bool SetOpenCL(CMyOpenCL *opencl) override;
|
|
virtual bool FeedForward(CNeuronBase *prevLayer) override;
|
|
virtual bool CalcHiddenGradient(CNeuronBase *prevLayer) override;
|
|
virtual bool CalcDeltaWeights(CNeuronBase *prevLayer, bool read) override;
|
|
virtual bool UpdateWeights(int batch_size, TYPE learningRate,
|
|
VECTOR &Beta, VECTOR &Lambda) override;
|
|
//--- file handling methods
|
|
virtual bool Save(const int file_handle) override;
|
|
virtual bool Load(const int file_handle) override;
|
|
//--- object identification method
|
|
virtual int Type(void) override const { return(defNeuronMHAttention); }
|
|
};
|
|
//+------------------------------------------------------------------+
|
|
//| Class constructor |
|
|
//+------------------------------------------------------------------+
|
|
CNeuronMHAttention::CNeuronMHAttention(void) : m_iHeads(8)
|
|
{
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Class destructor |
|
|
//+------------------------------------------------------------------+
|
|
CNeuronMHAttention::~CNeuronMHAttention(void)
|
|
{
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Class initialization method |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::Init(const CLayerDescription *desc)
|
|
{
|
|
//--- check source data
|
|
if(!desc || desc.type != Type() ||
|
|
desc.count <= 0 || desc.window <= 0 || desc.window_out <= 0 ||
|
|
desc.step <= 0)
|
|
return false;
|
|
//--- save constants
|
|
m_iWindow = desc.window;
|
|
m_iUnits = desc.count;
|
|
m_iKeysSize = desc.window_out;
|
|
m_iHeads = desc.step;
|
|
//--- call the initialization method of the parent class
|
|
CLayerDescription* temp = new CLayerDescription();
|
|
if(!temp)
|
|
return false;
|
|
temp.type = desc.type;
|
|
temp.optimization = desc.optimization;
|
|
temp.activation = AF_NONE;
|
|
temp.count = desc.count;
|
|
temp.window_out = 1;
|
|
temp.window = 0;
|
|
if(!CNeuronBase::Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
//--- initialize AttentionOut
|
|
temp.type = defNeuronBase;
|
|
temp.count = (int)(m_iUnits * m_iKeysSize * m_iHeads);
|
|
if(!m_cAttentionOut.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
if(!m_cAttentionOut.GetOutputs().m_mMatrix.Reshape(m_iUnits, m_iKeysSize * m_iHeads) ||
|
|
!m_cAttentionOut.GetGradients().m_mMatrix.Reshape(m_iUnits, m_iKeysSize * m_iHeads))
|
|
return false;
|
|
//--- create a description for the internal neural layers
|
|
if(!temp)
|
|
return false;
|
|
temp.type = defNeuronConv;
|
|
temp.window = m_iWindow;
|
|
temp.window_out = (int)(m_iKeysSize * m_iHeads);
|
|
temp.step = m_iWindow;
|
|
temp.count = m_iUnits;
|
|
//--- initialize Querys
|
|
if(!m_cQuerys.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cQuerys.SetTransposedOutput(true);
|
|
//--- initialize Keys
|
|
if(!m_cKeys.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cKeys.SetTransposedOutput(true);
|
|
//--- initialize Values
|
|
if(!m_cValues.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cValues.SetTransposedOutput(true);
|
|
//--- initialize Scores
|
|
if(!m_cScores.BufferInit(m_iHeads, m_iUnits * m_iUnits))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
//--- initialize W0
|
|
temp.window = (int)(m_iKeysSize * m_iHeads);
|
|
temp.step = temp.window;
|
|
temp.window_out = m_iWindow;
|
|
if(!m_cW0.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cW0.SetTransposedOutput(true);
|
|
//--- initialize FF1
|
|
temp.window = m_iWindow;
|
|
temp.step = temp.window;
|
|
temp.window_out = temp.window * 4;
|
|
temp.activation = AF_SWISH;
|
|
temp.activation_params[0] = 1;
|
|
temp.activation_params[1] = 0;
|
|
if(!m_cFF1.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cFF1.SetTransposedOutput(true);
|
|
//--- initialize FF2
|
|
temp.window = temp.window_out;
|
|
temp.window_out = temp.step;
|
|
temp.step = temp.window;
|
|
temp.activation = desc.activation;
|
|
temp.activation_params = desc.activation_params;
|
|
if(!m_cFF2.Init(temp))
|
|
{
|
|
delete temp;
|
|
return false;
|
|
}
|
|
m_cFF2.SetTransposedOutput(true);
|
|
delete temp;
|
|
//--- to avoid copying buffers, substitute them
|
|
if(!SetOutputs(m_cFF2.GetOutputs()))
|
|
return false;
|
|
if(m_cGradients)
|
|
delete m_cGradients;
|
|
m_cGradients = m_cFF2.GetGradients();
|
|
//---
|
|
SetOpenCL(m_cOpenCL);
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for passing a pointer to the OpenCL object to all |
|
|
//| internal objects |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::SetOpenCL(CMyOpenCL *opencl)
|
|
{
|
|
//--- call of the method of the parent class
|
|
CNeuronAttention::SetOpenCL(opencl);
|
|
//--- call the relevant method for the inner layer
|
|
m_cW0.SetOpenCL(m_cOpenCL);
|
|
//---
|
|
return(!!m_cOpenCL);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Feed-forward method |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::FeedForward(CNeuronBase *prevLayer)
|
|
{
|
|
//--- check the relevance of all objects
|
|
if(!prevLayer || !prevLayer.GetOutputs())
|
|
return false;
|
|
//---
|
|
if(!m_cQuerys.FeedForward(prevLayer))
|
|
return false;
|
|
if(!m_cKeys.FeedForward(prevLayer))
|
|
return false;
|
|
if(!m_cValues.FeedForward(prevLayer))
|
|
return false;
|
|
//--- initialize AttentionOut
|
|
if(!m_cAttentionOut.GetOutputs())
|
|
return false;
|
|
//--- branching of the algorithm across computing devices
|
|
MATRIX out;
|
|
if(!m_cOpenCL)
|
|
{
|
|
if(!out.Init(m_iHeads, m_iUnits * m_iKeysSize))
|
|
return false;
|
|
MATRIX querys[], keys[], values[];
|
|
if(!m_cQuerys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, querys))
|
|
return false;
|
|
if(!m_cKeys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, keys))
|
|
return false;
|
|
if(!m_cValues.GetOutputs().m_mMatrix.Vsplit(m_iHeads, values))
|
|
return false;
|
|
for(int head = 0; head < m_iHeads; head++)
|
|
{
|
|
//--- define Scores
|
|
MATRIX sc = exp(querys[head].MatMul(keys[head].Transpose()) / sqrt(m_iKeysSize));
|
|
VECTOR sum = sc.Sum(1);
|
|
for(uint r = 0; r < sc.Rows(); r++)
|
|
if(!sc.Row(sc.Row(r) / sum[r], r))
|
|
return false;
|
|
//--- output of the Attention block
|
|
MATRIX temp = sc.MatMul(values[head]).Transpose();
|
|
if(!temp.Reshape(1, m_iUnits * m_iKeysSize))
|
|
return false;
|
|
if(!sc.Reshape(1, m_iUnits * m_iUnits))
|
|
return false;
|
|
if(!m_cScores.m_mMatrix.Row(sc.Row(0), head))
|
|
return false;
|
|
if(!out.Row(temp.Row(0), head))
|
|
return false;
|
|
}
|
|
if(!out.Reshape(m_iHeads * m_iKeysSize, m_iUnits))
|
|
return false;
|
|
m_cAttentionOut.GetOutputs().m_mMatrix = out.Transpose();
|
|
}
|
|
else // OpenCL block
|
|
{
|
|
//--- check data buffers
|
|
if(m_cQuerys.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cKeys.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cValues.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cScores.GetIndex() < 0)
|
|
return false;
|
|
if(m_cAttentionOut.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
//--- pass parameters to the kernel
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_keys, m_cKeys.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_outputs, m_cAttentionOut.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_querys, m_cQuerys.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_scores, m_cScores.GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionFeedForward, def_attff_values, m_cValues.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward, def_attff_key_size, m_iKeysSize))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward, def_attff_window, m_iKeysSize))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgument(def_k_AttentionFeedForward, def_attff_mask, 0))
|
|
return false;
|
|
//--- place kernel to the execution queue
|
|
int off_set[] = {0, 0};
|
|
int NDRange[] = {m_iUnits, m_iHeads};
|
|
if(!m_cOpenCL.Execute(def_k_AttentionFeedForward, 2, off_set, NDRange))
|
|
return false;
|
|
}
|
|
//---
|
|
if(!m_cW0.FeedForward(GetPointer(m_cAttentionOut)))
|
|
return false;
|
|
//--- sum with source data and normalize
|
|
if(!m_cW0.GetOutputs().SumArray(prevLayer.GetOutputs()))
|
|
return false;
|
|
if(!NormlizeBuffer(m_cW0.GetOutputs(), GetPointer(m_cStd), 0))
|
|
return false;
|
|
//---
|
|
if(!m_cFF1.FeedForward(GetPointer(m_cW0)))
|
|
return false;
|
|
if(!m_cFF2.FeedForward(GetPointer(m_cFF1)))
|
|
return false;
|
|
//--- sum with the attention output and normalize
|
|
if(!m_cOutputs.SumArray(m_cW0.GetOutputs()))
|
|
return false;
|
|
if(!NormlizeBuffer(m_cOutputs, GetPointer(m_cStd), 1))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for propagating error gradient through hidden layer |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::CalcHiddenGradient(CNeuronBase *prevLayer)
|
|
{
|
|
//--- check the relevance of all objects
|
|
if(!m_cOutputs || !m_cGradients ||
|
|
m_cOutputs.Total() != m_cGradients.Total())
|
|
return false;
|
|
//--- scale the gradient for normalization
|
|
if(!NormlizeBufferGradient(m_cOutputs, m_cGradients, GetPointer(m_cStd), 1))
|
|
return false;
|
|
//--- propagate error gradient through the Feed Forward block
|
|
if(!m_cFF2.CalcHiddenGradient(GetPointer(m_cFF1)))
|
|
return false;
|
|
if(!m_cFF1.CalcHiddenGradient(GetPointer(m_cW0)))
|
|
return false;
|
|
if(!m_cW0.GetGradients().SumArray(m_cGradients))
|
|
return false;
|
|
//--- adjust the gradient for normalization
|
|
if(!NormlizeBufferGradient(m_cW0.GetOutputs(), m_cW0.GetGradients(), GetPointer(m_cStd), 0))
|
|
return false;
|
|
//--- distribute error gradient to attention heads
|
|
if(!m_cW0.CalcHiddenGradient(GetPointer(m_cAttentionOut)))
|
|
return false;
|
|
//--- branching of the algorithm across computing devices
|
|
if(!m_cOpenCL)
|
|
{
|
|
MATRIX gradients[];
|
|
MATRIX querys[], querys_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);
|
|
MATRIX keys[], keys_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);
|
|
MATRIX values[], values_grad = MATRIX::Zeros(m_iHeads, m_iUnits * m_iKeysSize);
|
|
MATRIX attention_grad = m_cAttentionOut.GetGradients().m_mMatrix;
|
|
if(!m_cQuerys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, querys) ||
|
|
!m_cKeys.GetOutputs().m_mMatrix.Vsplit(m_iHeads, keys) ||
|
|
!m_cValues.GetOutputs().m_mMatrix.Vsplit(m_iHeads, values) ||
|
|
!attention_grad.Reshape(m_iUnits, m_iHeads * m_iKeysSize) ||
|
|
!attention_grad.Vsplit(m_iHeads, gradients))
|
|
return false;
|
|
for(int head = 0; head < m_iHeads; head++)
|
|
{
|
|
//--- gradient propagation to Values
|
|
MATRIX score = MATRIX::Zeros(1, m_iUnits * m_iUnits);
|
|
if(!score.Row(m_cScores.m_mMatrix.Row(head), 0) ||
|
|
!score.Reshape(m_iUnits, m_iUnits))
|
|
return false;
|
|
MATRIX temp = (score.Transpose().MatMul(gradients[head])).Transpose();
|
|
if(!temp.Reshape(1, m_iUnits * m_iKeysSize) ||
|
|
!values_grad.Row(temp.Row(0), head))
|
|
return false;
|
|
//--- gradient propagation to Score
|
|
gradients[head] = gradients[head].MatMul(values[head].Transpose());
|
|
//--- adjust gradient to the SoftMax derivative
|
|
for(int r = 0; r < m_iUnits; r++)
|
|
{
|
|
MATRIX ident = MATRIX::Identity(m_iUnits, m_iUnits);
|
|
MATRIX ones = MATRIX::Ones(m_iUnits, 1);
|
|
MATRIX result = MATRIX::Zeros(1, m_iUnits);
|
|
if(!result.Row(score.Row(r), 0))
|
|
return false;
|
|
result = ones.MatMul(result);
|
|
result = result.Transpose() * (ident - result);
|
|
if(!gradients[head].Row(result.MatMul(gradients[head].Row(r)) / sqrt(m_iKeysSize), r))
|
|
return false;
|
|
}
|
|
//--- gradient propagation to Querys and Keys
|
|
temp = (gradients[head].MatMul(keys[head])).Transpose();
|
|
if(! temp.Reshape(1, m_iUnits * m_iKeysSize) ||
|
|
!querys_grad.Row(temp.Row(0), head))
|
|
return false;
|
|
temp = (gradients[head].Transpose().MatMul(querys[head])).Transpose();
|
|
if(! temp.Reshape(1, m_iUnits * m_iKeysSize) ||
|
|
!keys_grad.Row(temp.Row(0), head))
|
|
return false;
|
|
}
|
|
//---
|
|
if(!querys_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits) ||
|
|
!keys_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits) ||
|
|
!values_grad.Reshape(m_iHeads * m_iKeysSize, m_iUnits))
|
|
return false;
|
|
m_cQuerys.GetGradients().m_mMatrix = querys_grad.Transpose();
|
|
m_cKeys.GetGradients().m_mMatrix = keys_grad.Transpose();
|
|
m_cValues.GetGradients().m_mMatrix = values_grad.Transpose();
|
|
}
|
|
else // OpenCL block
|
|
{
|
|
//--- check data buffers
|
|
if(m_cValues.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cValues.GetGradients().GetIndex() < 0)
|
|
return false;
|
|
if(m_cScores.GetIndex() < 0)
|
|
return false;
|
|
if(m_cAttentionOut.GetGradients().GetIndex() < 0)
|
|
return false;
|
|
if(m_cScoreGrad < 0)
|
|
return false;
|
|
if(m_cScoreTemp < 0)
|
|
return false;
|
|
//--- pass parameters to the kernel
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_outputs_grad, m_cAttentionOut.GetGradients().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_scores, m_cScores.GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_scores_grad, m_cScoreGrad))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_scores_temp, m_cScoreTemp))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_values, m_cValues.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionScoreGradients, def_attscr_values_grad, m_cValues.GetGradients().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgument(def_k_AttentionScoreGradients, def_attscr_window, m_iKeysSize))
|
|
return false;
|
|
//--- place kernel to the execution queue
|
|
int off_set[] = {0, 0};
|
|
int NDRange[] = {m_iUnits, m_iHeads};
|
|
if(!m_cOpenCL.Execute(def_k_AttentionScoreGradients, 2, off_set, NDRange))
|
|
return false;
|
|
//--- check data buffers
|
|
if(m_cQuerys.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cQuerys.GetGradients().GetIndex() < 0)
|
|
return false;
|
|
if(m_cKeys.GetOutputs().GetIndex() < 0)
|
|
return false;
|
|
if(m_cKeys.GetGradients().GetIndex() < 0)
|
|
return false;
|
|
//--- pass arguments to the kernel
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, def_atthgr_keys, m_cKeys.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, def_atthgr_keys_grad, m_cKeys.GetGradients().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, def_atthgr_querys, m_cQuerys.GetOutputs().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, def_atthgr_querys_grad, m_cQuerys.GetGradients().GetIndex()))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgumentBuffer(def_k_AttentionHiddenGradients, def_atthgr_scores_grad, m_cScoreGrad))
|
|
return false;
|
|
if(!m_cOpenCL.SetArgument(def_k_AttentionHiddenGradients, def_atthgr_key_size, m_iKeysSize))
|
|
return false;
|
|
//--- place kernel to the execution queue
|
|
if(!m_cOpenCL.Execute(def_k_AttentionHiddenGradients, 2, off_set, NDRange))
|
|
return false;
|
|
}
|
|
//--- propagate error gradient to the previous year
|
|
if(!m_cW0.CalcDeltaWeights(GetPointer(m_cAttentionOut), false))
|
|
return false;
|
|
CBufferType* attention_grad = m_cW0.GetGradients();
|
|
if(!m_cValues.CalcHiddenGradient(prevLayer))
|
|
return false;
|
|
if(!attention_grad.SumArray(prevLayer.GetGradients()))
|
|
return false;
|
|
if(!m_cQuerys.CalcHiddenGradient(prevLayer))
|
|
return false;
|
|
if(!attention_grad.SumArray(prevLayer.GetGradients()))
|
|
return false;
|
|
if(!m_cKeys.CalcHiddenGradient(prevLayer))
|
|
return false;
|
|
if(!prevLayer.GetGradients().SumArray(attention_grad))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for propagating the error gradient to the weight matrix |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::CalcDeltaWeights(CNeuronBase *prevLayer, bool read)
|
|
{
|
|
//--- call the relevant method for all internal layers
|
|
if(!m_cFF2.CalcDeltaWeights(GetPointer(m_cFF1), false))
|
|
return false;
|
|
if(!m_cFF1.CalcDeltaWeights(GetPointer(m_cW0), false))
|
|
return false;
|
|
if(!m_cQuerys.CalcDeltaWeights(prevLayer, false))
|
|
return false;
|
|
if(!m_cKeys.CalcDeltaWeights(prevLayer, false))
|
|
return false;
|
|
if(!m_cValues.CalcDeltaWeights(prevLayer, read))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for updating weight matrices |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::UpdateWeights(int batch_size, TYPE learningRate, VECTOR &Beta, VECTOR &Lambda)
|
|
{
|
|
//--- call of the method of the parent class
|
|
if(!CNeuronAttention::UpdateWeights(batch_size, learningRate, Beta, Lambda))
|
|
return false;
|
|
//--- call the relevant method for all internal layers
|
|
if(!m_cW0.UpdateWeights(batch_size, learningRate, Beta, Lambda))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for saving class elements to a file |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::Save(const int file_handle)
|
|
{
|
|
//--- call of the method of the parent class
|
|
if(!CNeuronAttention::Save(file_handle))
|
|
return false;
|
|
//--- save constants
|
|
if(FileWriteInteger(file_handle, m_iHeads) <= 0)
|
|
return false;
|
|
//--- call the relevant method for all internal layers
|
|
if(!m_cW0.Save(file_handle))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Method for restoring the class from saved data |
|
|
//+------------------------------------------------------------------+
|
|
bool CNeuronMHAttention::Load(const int file_handle)
|
|
{
|
|
//--- call of the method of the parent class
|
|
if(!CNeuronAttention::Load(file_handle))
|
|
return false;
|
|
//--- load constants
|
|
m_iHeads = FileReadInteger(file_handle);
|
|
//--- call the relevant method for all internal layers
|
|
if(FileReadInteger(file_handle) != defNeuronConv || !m_cW0.Load(file_handle))
|
|
return false;
|
|
//--- initialize Scores
|
|
if(!m_cScores.BufferInit(m_iHeads, m_iUnits * m_iUnits))
|
|
return false;
|
|
//---
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|