285 lines
No EOL
12 KiB
Python
285 lines
No EOL
12 KiB
Python
# -------------------------------------------------------#
|
|
# Script for comparative testing of models with #
|
|
# the batch normalization layer and without it. #
|
|
# When training models, from training dataset, script #
|
|
# allocates 10% to validate the outputs. #
|
|
# After training, the script tests the performance #
|
|
# of the model on a test dataset (separate data file) #
|
|
# -------------------------------------------------------#
|
|
# Import Libraries
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
import matplotlib as mp
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.font_manager as fm
|
|
import MetaTrader5 as mt5
|
|
|
|
# Add fonts
|
|
font_list=fm.findSystemFonts()
|
|
for f in font_list:
|
|
if(f.__contains__('ClearSans')):
|
|
fm.fontManager.addfont(f)
|
|
|
|
# Set parameters for output graphs
|
|
mp.rcParams.update({'font.family':'serif',
|
|
'font.serif':'Clear Sans',
|
|
'axes.titlesize': 'x-large',
|
|
'axes.labelsize':'medium',
|
|
'xtick.labelsize':'small',
|
|
'ytick.labelsize':'small',
|
|
'legend.fontsize':'small',
|
|
'figure.figsize':[6.0,4.0],
|
|
'axes.titlecolor': '#707070',
|
|
'axes.labelcolor': '#707070',
|
|
'axes.edgecolor': '#707070',
|
|
'xtick.labelcolor': '#707070',
|
|
'ytick.labelcolor': '#707070',
|
|
'xtick.color': '#707070',
|
|
'ytick.color': '#707070',
|
|
'text.color': '#707070',
|
|
'lines.linewidth': 0.8,
|
|
'axes.linewidth': 0.5
|
|
})
|
|
|
|
# Connect to the MetaTrader 5 terminal
|
|
if not mt5.initialize():
|
|
print("initialize() failed, error code =",mt5.last_error())
|
|
quit()
|
|
# Request path to the Sandbox
|
|
path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')
|
|
mt5.shutdown()
|
|
# Load training dataset
|
|
filename = os.path.join(path,'study_data.csv')
|
|
filename_not_norm = os.path.join(path,'study_data_not_norm.csv')
|
|
data = np.asarray( pd.read_table(filename,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
|
|
# Split training dataset to input data and target
|
|
targets=2
|
|
inputs=data.shape[1]-targets
|
|
train_data=data[:,0:inputs]
|
|
train_target=data[:,inputs:]
|
|
|
|
# load non-normalized training dataset
|
|
data = np.asarray( pd.read_table(filename_not_norm,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
# Split non-normalized training dataset to input data and target
|
|
train_nn_data=data[:,0:inputs]
|
|
train_nn_target=data[:,inputs:]
|
|
|
|
del data
|
|
|
|
# Create the first model with one hidden layer
|
|
model1 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(targets, activation=tf.nn.tanh)
|
|
])
|
|
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=20)
|
|
model1.compile(optimizer='Adam',
|
|
loss='mean_squared_error',
|
|
metrics=['accuracy'])
|
|
model1.summary()
|
|
|
|
# Add batch normalization for input data to the model with one hidden layer
|
|
model1bn = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
|
keras.layers.BatchNormalization(),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(targets, activation=tf.nn.tanh)
|
|
])
|
|
model1bn.compile(optimizer='Adam',
|
|
loss='mean_squared_error',
|
|
metrics=['accuracy'])
|
|
model1bn.summary()
|
|
|
|
# Create a model with three hidden layers
|
|
model2 = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(targets, activation=tf.nn.tanh)
|
|
])
|
|
model2.compile(optimizer='Adam',
|
|
loss='mean_squared_error',
|
|
metrics=['accuracy'])
|
|
model2.summary()
|
|
|
|
# Add batch normalization for the input data and hidden layers of the 2nd model
|
|
model2bn = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
|
keras.layers.BatchNormalization(),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.BatchNormalization(),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.BatchNormalization(),
|
|
keras.layers.Dense(40, activation=tf.nn.swish),
|
|
keras.layers.Dense(targets, activation=tf.nn.tanh)
|
|
])
|
|
model2bn.compile(optimizer='Adam',
|
|
loss='mean_squared_error',
|
|
metrics=['accuracy'])
|
|
model2bn.summary()
|
|
|
|
# Train the first model using non-normalized data
|
|
history1nn = model1.fit(train_nn_data, train_nn_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
|
|
# Train the first model using normalized data
|
|
history1 = model1.fit(train_data, train_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
model1.save(os.path.join(path,'perceptron1.h5'))
|
|
|
|
history1bn = model1bn.fit(train_nn_data, train_nn_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
model1bn.save(os.path.join(path,'perceptron1bn.h5'))
|
|
|
|
|
|
history2 = model2.fit(train_data, train_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
model2.save(os.path.join(path,'perceptron2.h5'))
|
|
|
|
history2bn = model2bn.fit(train_nn_data, train_nn_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
model2bn.save(os.path.join(path,'perceptron2bn.h5'))
|
|
|
|
# Render training results of models with 1 hidden layer
|
|
plt.plot(history1.history['loss'], label='Normalized inputs train')
|
|
plt.plot(history1.history['val_loss'], label='Normalized inputs validation')
|
|
plt.plot(history1nn.history['loss'], label='Unnormalized inputs train')
|
|
plt.plot(history1nn.history['val_loss'], label='Unnormalized inputs vvalidation')
|
|
plt.plot(history1bn.history['loss'], label='Unnormalized inputs\nvs BatchNormalization train')
|
|
plt.plot(history1bn.history['val_loss'], label='Unnormalized inputs\nvs BatchNormalization validation')
|
|
plt.ylabel('$MSE$ $loss$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics\n1 hidden layer')
|
|
plt.legend(loc='upper right', ncol=2)
|
|
|
|
plt.figure()
|
|
plt.plot(history1.history['accuracy'], label='Normalized inputs train')
|
|
plt.plot(history1.history['val_accuracy'], label='Normalized inputs validation')
|
|
plt.plot(history1nn.history['accuracy'], label='Unnormalized inputs train')
|
|
plt.plot(history1nn.history['val_accuracy'], label='Unnormalized inputs validation')
|
|
plt.plot(history1bn.history['accuracy'], label='Unnormalized inputs\nvs BatchNormalization train')
|
|
plt.plot(history1bn.history['val_accuracy'], label='Unnormalized inputs\nvs BatchNormalization validation')
|
|
plt.ylabel('$Accuracy$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics\n1 hidden layer')
|
|
plt.legend(loc='lower right', ncol=2)
|
|
|
|
# Render training results of models with 3 hidden layers
|
|
plt.figure()
|
|
plt.plot(history2.history['loss'], label='Normalized inputs train')
|
|
plt.plot(history2.history['val_loss'], label='Normalized inputs validation')
|
|
plt.plot(history2bn.history['loss'], label='Unnormalized inputs\nvs BatchNormalization train')
|
|
plt.plot(history2bn.history['val_loss'], label='Unnormalized inputs\nvs BatchNormalization validation')
|
|
plt.ylabel('$MSE$ $loss$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics\n3 hidden layers')
|
|
plt.legend(loc='upper right', ncol=2)
|
|
|
|
plt.figure()
|
|
plt.plot(history2.history['accuracy'], label='Normalized inputs train')
|
|
plt.plot(history2.history['val_accuracy'], label='Normalized inputs validation')
|
|
plt.plot(history2bn.history['accuracy'], label='Unnormalized inputs\nvs BatchNormalization train')
|
|
plt.plot(history2bn.history['val_accuracy'], label='Unnormalized inputs\nvs BatchNormalization validation')
|
|
plt.ylabel('$Accuracy$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics\n3 hidden layers')
|
|
plt.legend(loc='lower right', ncol=2)
|
|
|
|
# Load testing dataset
|
|
test_filename = os.path.join(path,'test_data.csv')
|
|
test = np.asarray( pd.read_table(test_filename,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
# Split test dataset to input data and target
|
|
test_data=test[:,0:inputs]
|
|
test_target=test[:,inputs:]
|
|
|
|
test_filename = os.path.join(path,'test_data_not_norm.csv')
|
|
test = np.asarray( pd.read_table(test_filename,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
# Split test dataset to input data and target
|
|
test_nn_data=test[:,0:inputs]
|
|
test_nn_target=test[:,inputs:]
|
|
|
|
del test
|
|
|
|
# Check model results on a test dataset
|
|
test_loss1, test_acc1 = model1.evaluate(test_data, test_target, verbose=2)
|
|
test_loss1bn, test_acc1bn = model1bn.evaluate(test_nn_data, test_nn_target, verbose=2)
|
|
test_loss2, test_acc2 = model2.evaluate(test_data, test_target, verbose=2)
|
|
test_loss2bn, test_acc2bn = model2bn.evaluate(test_nn_data, test_nn_target, verbose=2)
|
|
# Log testing results
|
|
print('Model 1 hidden layer')
|
|
print('Test accuracy:', test_acc1)
|
|
print('Test loss:', test_loss1)
|
|
|
|
print('Model 1 hidden layer vs BatchNormalization')
|
|
print('Test accuracy:', test_acc1bn)
|
|
print('Test loss:', test_loss1bn)
|
|
|
|
print('Model 3 hidden layers')
|
|
print('Test accuracy:', test_acc2)
|
|
print('Test loss:', test_loss2)
|
|
|
|
print('Model 3 hidden layers vs BatchNormalization')
|
|
print('Test accuracy:', test_acc2bn)
|
|
print('Test loss:', test_loss2bn)
|
|
|
|
plt.figure()
|
|
plt.bar(['1 hidden layer','1 hidden layer\nvs BatchNormalization','3 hidden layers','3 hidden layers\nvs BatchNormalization'],
|
|
[test_loss1,test_loss1bn,test_loss2,test_loss2bn])
|
|
plt.ylabel('$MSE$ $Loss$')
|
|
plt.title('Test results')
|
|
plt.figure()
|
|
plt.bar(['1 hidden layer','1 hidden layer\nvs BatchNormalization','3 hidden layers','3 hidden layers\nvs BatchNormalization'],
|
|
[test_acc1,test_acc1bn,test_acc2,test_acc2bn])
|
|
plt.ylabel('$Accuracy$')
|
|
plt.title('Test results')
|
|
|
|
plt.show() |