34 lines
926 B
Python
34 lines
926 B
Python
|
# Import Libraries
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import MetaTrader5 as mt5
|
||
|
|
||
|
|
||
|
# Load training dataset
|
||
|
if not mt5.initialize():
|
||
|
print("initialize() failed, error code =",mt5.last_error())
|
||
|
quit()
|
||
|
|
||
|
path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')
|
||
|
mt5.shutdown()
|
||
|
filename = os.path.join(path,'pricecorr.csv')
|
||
|
data = pd.read_csv(filename,
|
||
|
sep=',',
|
||
|
skip_blank_lines=True,
|
||
|
skipinitialspace=True,
|
||
|
encoding='utf-8',
|
||
|
float_precision='high',
|
||
|
dtype=np.float64,
|
||
|
low_memory=False)
|
||
|
|
||
|
# Split training dataset to input data and target
|
||
|
|
||
|
print(data)
|
||
|
df = pd.DataFrame(data)
|
||
|
correlation_matrix =df.corr()
|
||
|
print(correlation_matrix)
|
||
|
filename = os.path.join(path,'pricecorr_result.csv')
|
||
|
correlation_matrix.to_csv(filename, encoding='utf-8')
|
||
|
|