532 lines
24 KiB
MQL5
532 lines
24 KiB
MQL5
|
//+------------------------------------------------------------------+
|
||
|
//| ChiSquare.mqh |
|
||
|
//| Copyright 2000-2025, MetaQuotes Ltd. |
|
||
|
//| https://www.mql5.com |
|
||
|
//+------------------------------------------------------------------+
|
||
|
#include "Math.mqh"
|
||
|
#include "Gamma.mqh"
|
||
|
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square density function (PDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the probability density function |
|
||
|
//| of the Chi-Square distribution with parameter nu. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Random variable |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The probability density evaluated at x. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathProbabilityDensityChiSquare(const double x,const double nu,const bool log_mode,int &error_code)
|
||
|
{
|
||
|
//--- check arguments
|
||
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_NAN;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be positive integer
|
||
|
if(nu<=0 || nu!=MathRound(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
|
||
|
error_code=ERR_OK;
|
||
|
if(x<=0.0)
|
||
|
return TailLog0(true,log_mode);
|
||
|
|
||
|
//--- calculate using Gamma density
|
||
|
double pdf=MathProbabilityDensityGamma(x,nu*0.5,2.0,error_code);
|
||
|
if(log_mode==true)
|
||
|
return MathLog(pdf);
|
||
|
return pdf;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square density function (PDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the probability density function |
|
||
|
//| of the Chi-Square distribution with parameter nu. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Random variable |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The probability density evaluated at x. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathProbabilityDensityChiSquare(const double x,const double nu,int &error_code)
|
||
|
{
|
||
|
return MathProbabilityDensityChiSquare(x,nu,false,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square density function (PDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the probability density function of the |
|
||
|
//| ChiSquare distribution with parameter nu for values in x[] array.|
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Array with random variables |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathProbabilityDensityChiSquare(const double &x[],const double nu,const bool log_mode,double &result[])
|
||
|
{
|
||
|
//--- check arguments
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
return false;
|
||
|
//--- nu must be positive integer
|
||
|
if(nu<=0 || nu!=MathRound(nu))
|
||
|
return false;
|
||
|
|
||
|
int data_count=ArraySize(x);
|
||
|
if(data_count==0)
|
||
|
return false;
|
||
|
|
||
|
int error_code=0;
|
||
|
ArrayResize(result,data_count);
|
||
|
for(int i=0; i<data_count; i++)
|
||
|
{
|
||
|
double x_arg=x[i];
|
||
|
|
||
|
if(!MathIsValidNumber(x_arg))
|
||
|
return false;
|
||
|
|
||
|
if(x_arg<=0.0)
|
||
|
result[i]=TailLog0(true,log_mode);
|
||
|
else
|
||
|
{
|
||
|
//--- calculate using Gamma density
|
||
|
double pdf=MathProbabilityDensityGamma(x_arg,nu*0.5,2.0,error_code);
|
||
|
if(log_mode==true)
|
||
|
result[i]=MathLog(pdf);
|
||
|
else
|
||
|
result[i]=pdf;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square density function (PDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the probability density function of the |
|
||
|
//| ChiSquare distribution with parameter nu for values in x[] array.|
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Array with random variables |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathProbabilityDensityChiSquare(const double &x[],const double nu,double &result[])
|
||
|
{
|
||
|
return MathProbabilityDensityChiSquare(x,nu,false,result);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square cumulative distribution function (CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the cumulative distribution function of the |
|
||
|
//| Chi-Square distribution with given nu, evaluated at x. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : The desired quantile |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| tail : Flag to calculate lower tail |
|
||
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The value of Chi-Square cumulative distribution function with |
|
||
|
//| parameter nu, evaluated at x. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathCumulativeDistributionChiSquare(const double x,const double nu,const bool tail,const bool log_mode,int &error_code)
|
||
|
{
|
||
|
//--- check x
|
||
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_NAN;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be positive integer
|
||
|
if(nu<=0 || nu!=MathRound(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
|
||
|
error_code=ERR_OK;
|
||
|
if(x<=0.0)
|
||
|
return TailLog0(true,log_mode);
|
||
|
//---- calculate using Gamma distribution
|
||
|
return MathCumulativeDistributionGamma(x,nu*0.5,2.0,tail,log_mode,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square cumulative distribution function (CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the cumulative distribution function of the |
|
||
|
//| Chi-Square distribution with given nu, evaluated at x. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : The desired quantile |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The value of Chi-Square cumulative distribution function with |
|
||
|
//| parameter nu, evaluated at x. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathCumulativeDistributionChiSquare(const double x,const double nu,int &error_code)
|
||
|
{
|
||
|
return MathCumulativeDistributionChiSquare(x,nu,true,false,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square cumulative distribution function (CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the cumulative distribution function of |
|
||
|
//| the Chi-Square distribution with parameter nu for values in x[]. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Array with random variables |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| tail : Flag to calculate lower tail |
|
||
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathCumulativeDistributionChiSquare(const double &x[],const double nu,const bool tail,const bool log_mode,double &result[])
|
||
|
{
|
||
|
//--- check NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
return false;
|
||
|
//--- nu must be positive integer
|
||
|
if(nu<=0 || nu!=MathRound(nu))
|
||
|
return false;
|
||
|
|
||
|
int data_count=ArraySize(x);
|
||
|
if(data_count==0)
|
||
|
return false;
|
||
|
|
||
|
int error_code=0;
|
||
|
ArrayResize(result,data_count);
|
||
|
for(int i=0; i<data_count; i++)
|
||
|
{
|
||
|
double x_arg=x[i];
|
||
|
|
||
|
if(!MathIsValidNumber(x_arg))
|
||
|
return false;
|
||
|
|
||
|
if(x_arg<=0.0)
|
||
|
result[i]=TailLog0(true,log_mode);
|
||
|
else
|
||
|
{
|
||
|
double cdf=MathCumulativeDistributionGamma(x_arg,nu*0.5,2.0,true,false,error_code);
|
||
|
result[i]=TailLogValue(cdf,tail,log_mode);
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square cumulative distribution function (CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the cumulative distribution function of |
|
||
|
//| the Chi-Square distribution with parameter nu for values in x[]. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| x : Array with random variables |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathCumulativeDistributionChiSquare(const double &x[],const double nu,double &result[])
|
||
|
{
|
||
|
return MathCumulativeDistributionChiSquare(x,nu,true,false,result);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square distribution quantile function (inverse CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the inverse cumulative distribution |
|
||
|
//| function of the Chi-Square distribution with parameter nu |
|
||
|
//| for the desired probability. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| probability : The desired probability |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| tail : Flag to calculate lower tail |
|
||
|
//| log_mode : Logarithm mode,if true it calculates for Log values|
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The value of the inverse cumulative distribution function |
|
||
|
//| of the Chi-Square distribution with parameter nu. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathQuantileChiSquare(const double probability,const double nu,const bool tail,const bool log_mode,int &error_code)
|
||
|
{
|
||
|
//--- check NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_NAN;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be positive
|
||
|
if(nu<=0)
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be integer
|
||
|
if(nu!=MathRound(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- calculate real probability
|
||
|
double prob=TailLogProbability(probability,tail,log_mode);
|
||
|
//--- check probability range
|
||
|
if(prob<0.0 || prob>1.0)
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
|
||
|
error_code=ERR_OK;
|
||
|
if(prob==0.0)
|
||
|
return 0.0;
|
||
|
|
||
|
if(prob==1.0)
|
||
|
return QPOSINF;
|
||
|
|
||
|
//---- calculate quantile using Gamma distribution
|
||
|
return MathQuantileGamma(prob,nu*0.5,2.0,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square distribution quantile function (inverse CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function returns the inverse cumulative distribution |
|
||
|
//| function of the Chi-Square distribution with parameter nu |
|
||
|
//| for the desired probability. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| probability : The desired probability |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The value of the inverse cumulative distribution function |
|
||
|
//| of the Chi-Square distribution with parameter nu. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathQuantileChiSquare(const double probability,const double nu,int &error_code)
|
||
|
{
|
||
|
return MathQuantileChiSquare(probability,nu,true,false,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square distribution quantile function (inverse CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the inverse cumulative distribution |
|
||
|
//| function of the Chi-Square distribution with parameter nu |
|
||
|
//| for values from the probability[] array. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| probability : Array with probabilities |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| tail : Flag to calculate lower tail |
|
||
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathQuantileChiSquare(const double &probability[],const double nu,const bool tail,const bool log_mode,double &result[])
|
||
|
{
|
||
|
//--- check NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
return false;
|
||
|
//--- nu must be positive
|
||
|
if(nu<=0)
|
||
|
return false;
|
||
|
//--- nu must be integer
|
||
|
if(nu!=MathRound(nu))
|
||
|
return false;
|
||
|
|
||
|
int data_count=ArraySize(probability);
|
||
|
if(data_count==0)
|
||
|
return false;
|
||
|
|
||
|
int error_code=0;
|
||
|
ArrayResize(result,data_count);
|
||
|
for(int i=0; i<data_count; i++)
|
||
|
{
|
||
|
//--- calculate real probability
|
||
|
double prob=TailLogProbability(probability[i],tail,log_mode);
|
||
|
|
||
|
//--- check probability range
|
||
|
if(prob<0.0 || prob>1.0)
|
||
|
return false;
|
||
|
|
||
|
if(prob==0.0)
|
||
|
result[i]=0.0;
|
||
|
else
|
||
|
if(prob==1.0)
|
||
|
result[i]=QPOSINF;
|
||
|
else
|
||
|
{
|
||
|
//--- calculate using Gamma distribution
|
||
|
result[i]=MathQuantileGamma(prob,nu*0.5,2.0,error_code);
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square distribution quantile function (inverse CDF) |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates the inverse cumulative distribution |
|
||
|
//| function of the Chi-Square distribution with parameter nu |
|
||
|
//| for values from the probability[] array. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| probability : Array with probabilities |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| result : Array with calculated values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathQuantileChiSquare(const double &probability[],const double nu,double &result[])
|
||
|
{
|
||
|
return MathQuantileChiSquare(probability,nu,true,false,result);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Random variate from the Chi-Square distribution |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Computes the random variable from the Chi-Square distribution |
|
||
|
//| with parameter nu. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| The random value with Chi-Square distribution. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
double MathRandomChiSquare(const double nu,int &error_code)
|
||
|
{
|
||
|
//--- NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_NAN;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be integer
|
||
|
if(nu!=MathRound(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
//--- nu must be positive
|
||
|
if(nu<=0)
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return QNaN;
|
||
|
}
|
||
|
|
||
|
error_code=ERR_OK;
|
||
|
//--- return gamma(nu/2,2)
|
||
|
return MathRandomGamma(nu*0.5,2.0,error_code);
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Random variate from Chi-Square distribution |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Generates random variables from the Chi-Square distribution |
|
||
|
//| with parameter nu. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| data_count : Number of values needed |
|
||
|
//| result : Output array with random values |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if successful, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathRandomChiSquare(const double nu,const int data_count,double &result[])
|
||
|
{
|
||
|
//--- check NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
return false;
|
||
|
//--- nu must be integer
|
||
|
if(nu!=MathRound(nu))
|
||
|
return false;
|
||
|
//--- nu must be positive
|
||
|
if(nu<=0)
|
||
|
return false;
|
||
|
int error_code=0;
|
||
|
//--- prepare output array and calculate random values
|
||
|
ArrayResize(result,data_count);
|
||
|
for(int i=0; i<data_count; i++)
|
||
|
{
|
||
|
//--- generate Gamma random number
|
||
|
result[i]=MathRandomGamma(nu*0.5,2.0,error_code);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| Chi-Square distribution moments |
|
||
|
//+------------------------------------------------------------------+
|
||
|
//| The function calculates 4 first moments of Chi-Square |
|
||
|
//| distribution with parameter nu. |
|
||
|
//| |
|
||
|
//| Arguments: |
|
||
|
//| nu : Degrees of freedom |
|
||
|
//| mean : Variable for mean value (1st moment) |
|
||
|
//| variance : Variable for variance value (2nd moment) |
|
||
|
//| skewness : Variable for skewness value (3rd moment) |
|
||
|
//| kurtosis : Variable for kurtosis value (4th moment) |
|
||
|
//| error_code : Variable for error code |
|
||
|
//| |
|
||
|
//| Return value: |
|
||
|
//| true if moments calculated successfully, otherwise false. |
|
||
|
//+------------------------------------------------------------------+
|
||
|
bool MathMomentsChiSquare(const double nu,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
|
||
|
{
|
||
|
//--- default values
|
||
|
mean =QNaN;
|
||
|
variance=QNaN;
|
||
|
skewness=QNaN;
|
||
|
kurtosis=QNaN;
|
||
|
//--- check NaN
|
||
|
if(!MathIsValidNumber(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_NAN;
|
||
|
return false;
|
||
|
}
|
||
|
//--- nu must be positive integer
|
||
|
if(nu<=0 || nu!=MathRound(nu))
|
||
|
{
|
||
|
error_code=ERR_ARGUMENTS_INVALID;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
error_code=ERR_OK;
|
||
|
//--- calculate moments
|
||
|
mean =nu;
|
||
|
variance=2*nu;
|
||
|
skewness=MathSqrt(8/nu);
|
||
|
kurtosis=12/nu;
|
||
|
//--- successful
|
||
|
return true;
|
||
|
}
|
||
|
//+------------------------------------------------------------------+
|