MobinMQL/Include/Math/Stat/ChiSquare.mqh

532 lines
24 KiB
MQL5
Raw Permalink Normal View History

2025-07-22 14:47:41 +03:00
//+------------------------------------------------------------------+
//| ChiSquare.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
#include "Gamma.mqh"
//+------------------------------------------------------------------+
//| Chi-Square density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Chi-Square distribution with parameter nu. |
//| |
//| Arguments: |
//| x : Random variable |
//| nu : Degrees of freedom |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityChiSquare(const double x,const double nu,const bool log_mode,int &error_code)
{
//--- check arguments
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- nu must be positive integer
if(nu<=0 || nu!=MathRound(nu))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<=0.0)
return TailLog0(true,log_mode);
//--- calculate using Gamma density
double pdf=MathProbabilityDensityGamma(x,nu*0.5,2.0,error_code);
if(log_mode==true)
return MathLog(pdf);
return pdf;
}
//+------------------------------------------------------------------+
//| Chi-Square density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Chi-Square distribution with parameter nu. |
//| |
//| Arguments: |
//| x : Random variable |
//| nu : Degrees of freedom |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityChiSquare(const double x,const double nu,int &error_code)
{
return MathProbabilityDensityChiSquare(x,nu,false,error_code);
}
//+------------------------------------------------------------------+
//| Chi-Square density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of the |
//| ChiSquare distribution with parameter nu for values in x[] array.|
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityChiSquare(const double &x[],const double nu,const bool log_mode,double &result[])
{
//--- check arguments
if(!MathIsValidNumber(nu))
return false;
//--- nu must be positive integer
if(nu<=0 || nu!=MathRound(nu))
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<=0.0)
result[i]=TailLog0(true,log_mode);
else
{
//--- calculate using Gamma density
double pdf=MathProbabilityDensityGamma(x_arg,nu*0.5,2.0,error_code);
if(log_mode==true)
result[i]=MathLog(pdf);
else
result[i]=pdf;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Chi-Square density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of the |
//| ChiSquare distribution with parameter nu for values in x[] array.|
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityChiSquare(const double &x[],const double nu,double &result[])
{
return MathProbabilityDensityChiSquare(x,nu,false,result);
}
//+------------------------------------------------------------------+
//| Chi-Square cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the cumulative distribution function of the |
//| Chi-Square distribution with given nu, evaluated at x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| nu : Degrees of freedom |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of Chi-Square cumulative distribution function with |
//| parameter nu, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionChiSquare(const double x,const double nu,const bool tail,const bool log_mode,int &error_code)
{
//--- check x
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- nu must be positive integer
if(nu<=0 || nu!=MathRound(nu))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<=0.0)
return TailLog0(true,log_mode);
//---- calculate using Gamma distribution
return MathCumulativeDistributionGamma(x,nu*0.5,2.0,tail,log_mode,error_code);
}
//+------------------------------------------------------------------+
//| Chi-Square cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the cumulative distribution function of the |
//| Chi-Square distribution with given nu, evaluated at x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| nu : Degrees of freedom |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of Chi-Square cumulative distribution function with |
//| parameter nu, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionChiSquare(const double x,const double nu,int &error_code)
{
return MathCumulativeDistributionChiSquare(x,nu,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Chi-Square cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Chi-Square distribution with parameter nu for values in x[]. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionChiSquare(const double &x[],const double nu,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(nu))
return false;
//--- nu must be positive integer
if(nu<=0 || nu!=MathRound(nu))
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<=0.0)
result[i]=TailLog0(true,log_mode);
else
{
double cdf=MathCumulativeDistributionGamma(x_arg,nu*0.5,2.0,true,false,error_code);
result[i]=TailLogValue(cdf,tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Chi-Square cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Chi-Square distribution with parameter nu for values in x[]. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionChiSquare(const double &x[],const double nu,double &result[])
{
return MathCumulativeDistributionChiSquare(x,nu,true,false,result);
}
//+------------------------------------------------------------------+
//| Chi-Square distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Chi-Square distribution with parameter nu |
//| for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| nu : Degrees of freedom |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates for Log values|
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Chi-Square distribution with parameter nu. |
//+------------------------------------------------------------------+
double MathQuantileChiSquare(const double probability,const double nu,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(nu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- nu must be positive
if(nu<=0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- nu must be integer
if(nu!=MathRound(nu))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(prob==0.0)
return 0.0;
if(prob==1.0)
return QPOSINF;
//---- calculate quantile using Gamma distribution
return MathQuantileGamma(prob,nu*0.5,2.0,error_code);
}
//+------------------------------------------------------------------+
//| Chi-Square distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Chi-Square distribution with parameter nu |
//| for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| nu : Degrees of freedom |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Chi-Square distribution with parameter nu. |
//+------------------------------------------------------------------+
double MathQuantileChiSquare(const double probability,const double nu,int &error_code)
{
return MathQuantileChiSquare(probability,nu,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Chi-Square distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Chi-Square distribution with parameter nu |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| nu : Degrees of freedom |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileChiSquare(const double &probability[],const double nu,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(nu))
return false;
//--- nu must be positive
if(nu<=0)
return false;
//--- nu must be integer
if(nu!=MathRound(nu))
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
if(prob==0.0)
result[i]=0.0;
else
if(prob==1.0)
result[i]=QPOSINF;
else
{
//--- calculate using Gamma distribution
result[i]=MathQuantileGamma(prob,nu*0.5,2.0,error_code);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Chi-Square distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Chi-Square distribution with parameter nu |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| nu : Degrees of freedom |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileChiSquare(const double &probability[],const double nu,double &result[])
{
return MathQuantileChiSquare(probability,nu,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Chi-Square distribution |
//+------------------------------------------------------------------+
//| Computes the random variable from the Chi-Square distribution |
//| with parameter nu. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Chi-Square distribution. |
//+------------------------------------------------------------------+
double MathRandomChiSquare(const double nu,int &error_code)
{
//--- NaN
if(!MathIsValidNumber(nu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- nu must be integer
if(nu!=MathRound(nu))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- nu must be positive
if(nu<=0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- return gamma(nu/2,2)
return MathRandomGamma(nu*0.5,2.0,error_code);
}
//+------------------------------------------------------------------+
//| Random variate from Chi-Square distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Chi-Square distribution |
//| with parameter nu. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomChiSquare(const double nu,const int data_count,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(nu))
return false;
//--- nu must be integer
if(nu!=MathRound(nu))
return false;
//--- nu must be positive
if(nu<=0)
return false;
int error_code=0;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- generate Gamma random number
result[i]=MathRandomGamma(nu*0.5,2.0,error_code);
}
return true;
}
//+------------------------------------------------------------------+
//| Chi-Square distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of Chi-Square |
//| distribution with parameter nu. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsChiSquare(const double nu,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(nu))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- nu must be positive integer
if(nu<=0 || nu!=MathRound(nu))
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
mean =nu;
variance=2*nu;
skewness=MathSqrt(8/nu);
kurtosis=12/nu;
//--- successful
return true;
}
//+------------------------------------------------------------------+