MobinMQL/Include/Math/Stat/NoncentralBeta.mqh

955 lines
39 KiB
MQL5
Raw Permalink Normal View History

2025-07-22 14:47:41 +03:00
//+------------------------------------------------------------------+
//| NoncentralBeta.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
#include "Beta.mqh"
#include "NoncentralChiSquare.mqh"
//+------------------------------------------------------------------+
//| Noncental Beta density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Noncental Beta distribution with parameters a,b,lambda |
//| Infinity |
//| f(x,a,b,lambda)=Sum [p(k)*x^(a+k-1)*(1-x)^(b-1)]/Beta(a+k,b) |
//| k=0 |
//| |
//| where p(k)=(1/k!)*exp(-lambda/2)*(lambda/2)^k, |
//| Beta(a,b)=Gamma(a)*Gamma(b)/Gamma(a+b) |
//| |
//| Arguments: |
//| x : Random variable |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNoncentralBeta(const double x,const double a,const double b,const double lambda,const bool log_mode,int &error_code)
{
//--- if lambda==0, return Beta density
if(lambda==0.0)
return MathProbabilityDensityBeta(x,a,b,error_code);
//--- check parameters
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<=0.0 || x>=1.0)
return TailLog0(true,log_mode);
//--- factors
double lambda_half=lambda*0.5;
double fact_mult=1.0;
double pwr_lambda_half=1.0;
double pwr_x=MathExp((a-1.0)*MathLog(x));
double r_beta=MathBeta(a,b);
double pdf=0;
//--- direct sum calculation
for(int j=0;; j++)
{
if(j>0)
{
pwr_x*=x;
pwr_lambda_half*=lambda_half;
fact_mult/=j;
double jm1=j-1;
r_beta*=((a+jm1)/(a+b+jm1));
}
double term=pwr_x*fact_mult*pwr_lambda_half/r_beta;
//---
if(term<10E-18)
break;
pdf+=term;
}
//--- calculate density coef
pdf*=MathExp((b-1.0)*MathLog(1.0-x))*MathExp(-lambda_half);
//--- return density
return TailLogValue(pdf,true,log_mode);
}
//+------------------------------------------------------------------+
//| Noncental Beta density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Noncental Beta distribution with parameters a,b,lambda. |
//| |
//| Arguments: |
//| x : Random variable |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNoncentralBeta(const double x,const double a,const double b,const double lambda,int &error_code)
{
return MathProbabilityDensityNoncentralBeta(x,a,b,lambda,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncental Beta density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Noncentral Beta distribution with parameters a,b,lambda |
//| for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNoncentralBeta(const double &x[],const double a,const double b,const double lambda,const bool log_mode,double &result[])
{
//--- if lambda==0, return Beta density
if(lambda==0.0)
return MathProbabilityDensityBeta(x,a,b,log_mode,result);
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
//--- common factors
double lambda_half=lambda*0.5;
double exp_lambda_half=MathExp(-lambda_half);
double r_beta0=MathBeta(a,b);
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(x_arg<=0.0 || x_arg>=1.0)
result[i]=TailLog0(true,log_mode);
else
{
double fact_mult=1.0;
double pwr_lambda_half=1.0;
double pwr_x=MathExp((a-1.0)*MathLog(x_arg));
double r_beta=r_beta0;
double pdf=0;
for(int j=0;; j++)
{
if(j>0)
{
pwr_x*=x_arg;
pwr_lambda_half*=lambda_half;
fact_mult/=j;
double jm1=j-1;
r_beta*=((a+jm1)/(a+b+jm1));
}
double term=pwr_x*fact_mult*pwr_lambda_half/r_beta;
//---
if(term<10E-18)
break;
pdf+=term;
}
//--- calculate density coef
pdf*=MathExp((b-1.0)*MathLog(1.0-x_arg))*exp_lambda_half;
result[i]=TailLogValue(pdf,true,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Noncental Beta density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Noncentral Beta distribution with parameters a,b,lambda |
//| for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNoncentralBeta(const double &x[],const double a,const double b,const double lambda,double &result[])
{
return MathProbabilityDensityNoncentralBeta(x,a,b,lambda,false,result);
}
//+------------------------------------------------------------------+
//| Noncental Beta cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Noncental Beta distribution with parameters a,b,lambda |
//| is less than or equal to x. |
//| |
//| Input parameters: |
//| x : The desired quantile |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Noncental Beta cumulative distribution function |
//| with parameters a,b,lambda, evaluated at x. |
//| |
//| Infinity |
//| F(x,a,b,lambda)=Sum p(k)*Ix(a+k,b) |
//| k=0 |
//| |
//| where p(k)=(1/k!)*exp(-lambda/2)*(lambda/2)^k, |
//| Ix(a,b) - incomplete Beta function |
//| |
//| Author: John Burkardt |
//| |
//| Reference: |
//| Harry Posten,"An Effective Algorithm for the Noncentral Beta |
//| Distribution Function", The American Statistician, |
//| Volume 47, Number 2, May 1993, pages 129-131. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNoncentralBeta(const double x,const double a,const double b,const double lambda,const bool tail,const bool log_mode,int &error_code)
{
//--- if lambda==0, return Beta CDF
if(lambda==0.0)
return MathCumulativeDistributionBeta(x,a,b,error_code);
//--- check parameters
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<=0.0)
return TailLog0(tail,log_mode);
if(x>=1.0)
return TailLog1(tail,log_mode);
const int max_terms=100;
double c=lambda*0.5;
double x0 = int(MathMax(c - 5*MathSqrt(c), 0));
double a0 = a + x0;
double beta = MathGammaLog(a0) + MathGammaLog(b) - MathGammaLog(a0+b);
double temp = MathBetaIncomplete(x, a0, b);
double gx=MathExp(a0*MathLog(x)+b*MathLog(1-x)-beta-MathLog(a0));
double q=0;
if(a0>a)
q=MathExp(-c+x0*MathLog(c)-MathGammaLog(x0+1));
else
q=MathExp(-c);
double sumq=1-q;
double betanc=q*temp;
double ab=a+b;
int j=0;
for(;;)
{
j++;
temp-=gx;
gx*=x*(ab+j-1)/(a+j);
q*=c/j;
sumq-=q;
betanc+=temp*q;
double err=(temp-gx)*sumq;
if(j>max_terms || err<1E-18)
break;
}
double cdf=MathMin(betanc,1.0);
return TailLogValue(cdf,tail,log_mode);
}
//+------------------------------------------------------------------+
//| Noncental Beta cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Noncental Beta distribution with parameters a,b,lambda |
//| is less than or equal to x. |
//| |
//| Input parameters: |
//| x : The desired quantile |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Noncental Beta cumulative distribution function |
//| with parameters a,b,lambda, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNoncentralBeta(const double x,const double a,const double b,const double lambda,int &error_code)
{
return MathCumulativeDistributionNoncentralBeta(x,a,b,lambda,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncental Beta cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Noncentral Beta distribution with parameters a,b,lambda |
//| for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNoncentralBeta(const double &x[],const double a,const double b,const double lambda,const bool tail,const bool log_mode,double &result[])
{
//--- if lambda==0, return Beta CDF
if(lambda==0.0)
return MathCumulativeDistributionBeta(x,a,b,tail,log_mode,result);
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
const int max_terms=100;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(x_arg<=0.0)
result[i]=TailLog0(tail,log_mode);
if(x_arg>=1.0)
result[i]=TailLog1(tail,log_mode);
else
{
double c=lambda*0.5;
double x0 = int(MathMax(c - 5*MathSqrt(c), 0));
double a0 = a + x0;
double beta = MathGammaLog(a0) + MathGammaLog(b) - MathGammaLog(a0+b);
double temp = MathBetaIncomplete(x_arg, a0, b);
double gx=MathExp(a0*MathLog(x_arg)+b*MathLog(1-x_arg)-beta-MathLog(a0));
double q=0;
if(a0>a)
q=MathExp(-c+x0*MathLog(c)-MathGammaLog(x0+1));
else
q=MathExp(-c);
double sumq=1-q;
double betanc=q*temp;
int j=0;
double ab=a+b;
for(;;)
{
j++;
temp-=gx;
gx*=x_arg*(ab+j-1)/(a+j);
q*=c/j;
sumq-=q;
betanc+=temp*q;
double err=(temp-gx)*sumq;
if(j>max_terms || err<1E-18)
break;
}
double cdf=MathMin(betanc,1.0);
result[i]=TailLogValue(cdf,tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Noncental Beta cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Noncentral Beta distribution with parameters a,b,lambda |
//| for values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNoncentralBeta(const double &x[],const double a,const double b,const double lambda,double &result[])
{
return MathCumulativeDistributionNoncentralBeta(x,a,b,lambda,true,false,result);
}
//+------------------------------------------------------------------+
//| Noncental Beta distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Noncental Beta distribution with parameters a,b |
//| and lambda for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function of |
//| of Noncental Beta distribution with parameters a,b and lambda. |
//+------------------------------------------------------------------+
double MathQuantileNoncentralBeta(const double probability,const double a,const double b,const double lambda,const bool tail,const bool log_mode,int &error_code)
{
if(log_mode==true && probability==QNEGINF)
return 0.0;
if(log_mode==false && probability==0)
return 0.0;
//--- if lambda==0, return beta quantile
if(lambda==0.0)
return MathQuantileBeta(probability,a,b,error_code);
//--- check parameters
if(!MathIsValidNumber(probability) || !MathIsValidNumber(a) || !MathIsValidNumber(b) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check probabilty
if(prob==0.0)
return 0.0;
if(prob==1.0)
return 1.0;
double lambda_half=lambda*0.5;
double lambda_half_log=MathLog(lambda_half);
double lambda_half_sqrt=MathSqrt(lambda_half);
double lambda_half_exp=MathExp(-lambda_half);
double x0=int(MathMax(lambda_half-5*lambda_half_sqrt,0));
double b_gamma_log=MathGammaLog(b);
double eps=10E-18;
double h_min=MathSqrt(eps);
//double lambda_half=lambda*0.5;
double r_beta0=MathBeta(a,b);
int err_code=0;
double x=0.5;
double h=1.0;
const int max_terms=100;
//--- Newton iterations
const int max_iterations=50;
int iterations=0;
while(iterations<max_iterations)
{
//--- check convergence
if((MathAbs(h)>h_min*MathAbs(x) && MathAbs(h)>h_min)==false)
break;
//--- calculate PDF
double pdf=0;
if(x<=0.0 || x>=1.0)
pdf=0;
else
{
double fact_mult=1.0;
double pwr_lambda_half=1.0;
double pwr_x=MathExp((a-1.0)*MathLog(x));
double r_beta=r_beta0;
//--- direct sum calculation
for(int j=0;; j++)
{
if(j>0)
{
pwr_x*=x;
pwr_lambda_half*=lambda_half;
fact_mult/=j;
double jm1=j-1;
r_beta*=((a+jm1)/(a+b+jm1));
}
double term=pwr_x*fact_mult*pwr_lambda_half/r_beta;
//---
if(term<10E-18)
break;
pdf+=term;
}
//--- calculate density coef
pdf*=MathExp((b-1.0)*MathLog(1.0-x))*lambda_half_exp;
}
//--- calculate CDF
double cdf=0;
if(x<=0.0)
cdf=0;
if(x>=1.0)
cdf=1;
else
{
double a0=a+x0;
double beta = MathGammaLog(a0) + b_gamma_log - MathGammaLog(a0+b);
double temp = MathBetaIncomplete(x, a0, b);
double gx=MathExp(a0*MathLog(x)+b*MathLog(1-x)-beta-MathLog(a0));
double q=0;
if(a0>a)
q=MathExp(-lambda_half+x0*lambda_half_log-MathGammaLog(x0+1));
else
q=lambda_half_exp;
double sumq=1-q;
double betanc=q*temp;
int j=0;
double ab=a+b;
for(;;)
{
j++;
temp-=gx;
gx*=x*(ab+j-1)/(a+j);
q*=lambda_half/j;
sumq-=q;
betanc+=temp*q;
double err=(temp-gx)*sumq;
if(j>max_terms || err<1E-18)
break;
}
cdf=MathMin(betanc,1.0);
}
//--- calculate ratio
h=(cdf-prob)/pdf;
double x_new=x-h;
if(x_new<0.0)
x_new=x*0.1;
else
if(x_new>1.0)
x_new=1.0-(1-x)*0.1;
if(MathAbs(x_new-x)<10E-16)
break;
x=x_new;
iterations++;
}
//--- check convergence
if(iterations<max_iterations)
return x;
else
{
error_code=ERR_NON_CONVERGENCE;
return QNaN;
}
return x;
}
//+------------------------------------------------------------------+
//| Noncental Beta distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Noncental Beta distribution with parameters a, b |
//| and lambda for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function of |
//| of Noncental Beta distribution with parameters a,b and lambda. |
//+------------------------------------------------------------------+
double MathQuantileNoncentralBeta(const double probability,const double a,const double b,const double lambda,int &error_code)
{
return MathQuantileNoncentralBeta(probability,a,b,lambda,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncental Beta distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Noncentral Beta distribution with parameter a,b |
//| lambda for the probability values from array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNoncentralBeta(const double &probability[],const double a,const double b,const double lambda,const bool tail,const bool log_mode,double &result[])
{
//--- if lambda==0, return beta quantile
if(lambda==0.0)
return MathQuantileBeta(probability,a,b,tail,log_mode,result);
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b) || !MathIsValidNumber(lambda))
return false;
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int err_code=0;
ArrayResize(result,data_count);
double lambda_half=lambda*0.5;
double lambda_half_log=MathLog(lambda_half);
double lambda_half_sqrt=MathSqrt(lambda_half);
double lambda_half_exp=MathExp(-lambda_half);
double r_beta0=MathBeta(a,b);
double x0=int(MathMax(lambda_half-5*lambda_half_sqrt,0));
double b_gamma_log=MathGammaLog(b);
const double eps=10E-18;
double h_min=MathSqrt(eps);
const int max_terms=100;
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
if(!MathIsValidNumber(prob))
return false;
if(prob==0.0)
result[i]=0.0;
else
if(prob==1.0)
result[i]=1.0;
else
{
double x=0.5;
double h=1.0;
//--- Newton iterations
const int max_iterations=50;
int iterations=0;
while(iterations<max_iterations)
{
//--- check convergence
if((MathAbs(h)>h_min*MathAbs(x) && MathAbs(h)>h_min)==false)
break;
//--- calculate PDF
double pdf=0;
if(x<=0.0 || x>=1.0)
pdf=0;
else
{
double fact_mult=1.0;
double pwr_lambda_half=1.0;
double pwr_x=MathExp((a-1.0)*MathLog(x));
double r_beta=r_beta0;
//--- direct sum calculation
for(int j=0;; j++)
{
if(j>0)
{
pwr_x*=x;
pwr_lambda_half*=lambda_half;
fact_mult/=j;
double jm1=j-1;
r_beta*=((a+jm1)/(a+b+jm1));
}
double term=pwr_x*fact_mult*pwr_lambda_half/r_beta;
//---
if(term<10E-18)
break;
pdf+=term;
}
//--- calculate density coef
pdf*=MathExp((b-1.0)*MathLog(1.0-x))*lambda_half_exp;
}
//--- calculate CDF
double cdf=0;
if(x<=0.0)
cdf=0;
if(x>=1.0)
cdf=1;
else
{
double a0=a+x0;
double beta = MathGammaLog(a0) + b_gamma_log - MathGammaLog(a0+b);
double temp = MathBetaIncomplete(x, a0, b);
double gx=MathExp(a0*MathLog(x)+b*MathLog(1-x)-beta-MathLog(a0));
double q=0;
if(a0>a)
q=MathExp(-lambda_half+x0*lambda_half_log-MathGammaLog(x0+1));
else
q=lambda_half_exp;
double sumq=1-q;
double betanc=q*temp;
int j=0;
double ab=a+b;
for(;;)
{
j++;
temp-=gx;
gx*=x*(ab+j-1)/(a+j);
q*=lambda_half/j;
sumq-=q;
betanc+=temp*q;
double err=(temp-gx)*sumq;
if(j>max_terms || err<1E-18)
break;
}
cdf=MathMin(betanc,1.0);
}
//--- calculate ratio
h=(cdf-prob)/pdf;
double x_new=x-h;
if(x_new<0.0)
x_new=x*0.1;
else
if(x_new>1.0)
x_new=1.0-(1-x)*0.1;
if(MathAbs(x_new-x)<10E-16)
break;
x=x_new;
iterations++;
}
//--- check convergence
if(iterations<max_iterations)
result[i]=x;
else
return false;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Noncental Beta distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Noncentral Beta distribution with parameter a,b |
//| lambda for the probability values from array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNoncentralBeta(const double &probability[],const double a,const double b,const double lambda,double &result[])
{
return MathQuantileNoncentralBeta(probability,a,b,lambda,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Noncentral Beta distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Noncentral Beta |
//| distribution with parameters a,b and lambda. |
//| |
//| Arguments: |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Noncentral Beta distribution. |
//+------------------------------------------------------------------+
double MathRandomNoncentralBeta(const double a,const double b,const double lambda,int &error_code)
{
//--- if lambda==0, return beta random variate
if(lambda==0.0)
return MathRandomBeta(a,b,error_code);
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- generate random number using Noncentral ChiSquare
double chi1=MathRandomNoncentralChiSquare(2*a,lambda,error_code);
double chi2=MathRandomChiSquare(2*b,error_code);
return chi1/(chi1+chi2);
}
//+------------------------------------------------------------------+
//| Random variate from the Noncentral Beta distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Noncentral Beta distribution |
//| with parameters a,b, lambda. |
//| |
//| Arguments: |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomNoncentralBeta(const double a,const double b,const double lambda,const int data_count,double &result[])
{
//--- if lambda==0, return beta random variate
if(lambda==0.0)
return MathRandomBeta(a,b,data_count,result);
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b) || !MathIsValidNumber(lambda))
return false;
//--- a,b,lambda must be positive
if(a<=0.0 || b<=0.0 || lambda<0)
return false;
int error_code=0;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
double a2=a*2;
double b2=b*2;
for(int i=0; i<data_count; i++)
{
//--- generate random number using Noncentral ChiSquare
double chi1=MathRandomNoncentralChiSquare(a2,lambda,error_code);
double chi2=MathRandomChiSquare(b2,error_code);
result[i]=chi1/(chi1+chi2);
}
return true;
}
//+------------------------------------------------------------------+
//| Noncental Beta distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of the Noncental Beta |
//| distribution with parameters a,b and lambda. |
//| |
//| Arguments: |
//| a : First shape parameter |
//| b : Second shape parameter |
//| lambda : Noncentrality parameter |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
double MathMomentsNoncentralBeta(const double a,const double b,const double lambda,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(a) || !MathIsValidNumber(b) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- a and b must be positive
if(a<=0.0 || b<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
//--- check lambda
if(lambda<0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- prepare coefficients
double lambda_half=lambda*0.5;
//--- hypergeometric function values
double f1=MathHypergeometric2F2(a+1,a+b,a,a+b+1,lambda_half);
double f2=MathHypergeometric2F2(a+2,a+b,a,a+b+2,lambda_half);
double f3=MathHypergeometric2F2(a+3,a+b,a,a+b+3,lambda_half);
double f4=MathHypergeometric2F2(a+4,a+b,a,a+b+4,lambda_half);
//--- exponents
double exp_lambda_half=MathExp(-lambda_half);
double exp_lambda=MathPow(exp_lambda_half,2);
//--- factors
double aab=a/(a+b);
double aab2=MathPow(aab,2);
double ab1=(a+1)/(a+b+1);
double ab2=(a+2)/(a+b+2);
double ab3=(a+3)/(a+b+3);
//--- calculate moments
mean=aab*exp_lambda_half*f1;
double mean2=MathPow(mean,2);
variance=aab*ab1*exp_lambda_half*f2-mean2;
skewness=(2*MathPow(mean,3)+exp_lambda_half*aab*ab1*(-3*mean*f2+ab2*f3))*MathPow(variance,-1.5);
kurtosis=-3+(-3*MathPow(mean,4)+exp_lambda*f1*aab2*(6*mean*ab1*f2-4*ab1*ab2*f3)+aab*ab1*ab2*ab3*exp_lambda_half*f4)*MathPow(aab*ab1*exp_lambda_half*f2-mean2,-2);
//--- successful
return true;
}
//+------------------------------------------------------------------+