MobinMQL/Include/Generic/Internal/Introsort.mqh
2025-07-22 14:47:41 +03:00

244 lines
7.9 KiB
MQL5

//+------------------------------------------------------------------+
//| Introsort.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
//+------------------------------------------------------------------+
//| Struct Introsort<TKey,TItem>. |
//| Usage: Used by the sort methods for instances of array. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
struct Introsort
{
public:
IComparer<TKey>* comparer;
TKey keys[];
TItem items[];
Introsort(void) {}
~Introsort(void) {}
//--- method for sort array
void Sort(const int index,const int length);
private:
//--- methods for introspective sorting
void IntroSort(const int lo,const int hi,int depthLimit);
int PickPivotAndPartition(const int lo,const int hi);
void InsertionSort(const int lo,const int hi);
//--- methods for heap sorting
void Heapsort(const int lo,const int hi);
void DownHeap(const int i,const int n,const int lo);
//--- swap methods
void SwapIfGreaterWithItems(const int a,const int b);
void Swap(const int i,const int j);
//--- service methods
int FloorLog2(int n) const;
};
//+------------------------------------------------------------------+
//| IntrospectiveSort is a hybrid sorting algorithm that provides |
//| both fast average performance and (asymptotically) optimal |
//| worst-case performance. It begins with quicksort and switches to |
//| heapsort when the recursion depth exceeds a level based on the |
//| number of elements being sorted. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::Sort(const int index,const int length)
{
if(length<2)
return;
IntroSort(index,length+index-1,2*FloorLog2(ArraySize(keys)));
}
//+------------------------------------------------------------------+
//| Exchanges the values of a and b, if a greater b. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::SwapIfGreaterWithItems(const int a,const int b)
{
if(a!=b)
{
if(comparer.Compare(keys[a],keys[b])>0)
{
TKey key=keys[a];
keys[a]=keys[b];
keys[b]=key;
if(ArraySize(items)!=NULL)
{
TItem item=items[a];
items[a]=items[b];
items[b]=item;
}
}
}
}
//+------------------------------------------------------------------+
//| Exchanges the values of a and b. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::Swap(const int i,const int j)
{
TKey key=keys[i];
keys[i]=keys[j];
keys[j]=key;
if(ArraySize(items)!=NULL)
{
TItem item=items[i];
items[i]=items[j];
items[j]=item;
}
}
//+------------------------------------------------------------------+
//| Returns the closest integer value less than or equal to the base |
//| 2 log of the input value. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
int Introsort::FloorLog2(int n) const
{
int result=0;
while(n>=1)
{
result++;
n=n/2;
}
return(result);
}
//+------------------------------------------------------------------+
//| Introspective sort. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::IntroSort(const int lo,int hi,int depthLimit)
{
const int IntrosortSizeThreshold=16;
while(hi>lo)
{
int partitionSize = hi - lo + 1;
if(partitionSize <= IntrosortSizeThreshold)
{
if(partitionSize==1)
{
return;
}
if(partitionSize==2)
{
SwapIfGreaterWithItems(lo,hi);
return;
}
if(partitionSize==3)
{
SwapIfGreaterWithItems(lo,hi-1);
SwapIfGreaterWithItems(lo,hi);
SwapIfGreaterWithItems(hi-1,hi);
return;
}
InsertionSort(lo,hi);
return;
}
if(depthLimit==0)
{
Heapsort(lo,hi);
return;
}
depthLimit--;
int p=PickPivotAndPartition(lo,hi);
IntroSort(p+1,hi,depthLimit);
hi=p-1;
}
}
//+------------------------------------------------------------------+
//| Insertion sort. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::InsertionSort(const int lo,const int hi)
{
int i,j;
TKey t;
TItem dt;
for(i=lo; i<hi; i++)
{
j = i;
t = keys[i + 1];
dt=(ArraySize(items)!=NULL) ? (TItem)items[i+1] : (TItem)NULL;
while(j>=lo && comparer.Compare(t,keys[j])<0)
{
keys[j+1]=keys[j];
if(ArraySize(items)!=NULL)
{
items[j+1]=items[j];
}
j--;
}
keys[j+1]=t;
if(ArraySize(items)!=NULL)
{
items[j+1]=dt;
}
}
}
//+------------------------------------------------------------------+
//| Array partitioning by a quick sort algorithm. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
int Introsort::PickPivotAndPartition(const int lo,const int hi)
{
//--- Compute median-of-three. But also partition them, since we've done the comparison.
int mid=lo+(hi-lo)/2;
SwapIfGreaterWithItems(lo,mid);
SwapIfGreaterWithItems(lo,hi);
SwapIfGreaterWithItems(mid,hi);
TKey pivot=keys[mid];
Swap(mid,hi-1);
int left=lo,right=hi-1;
while(left<right)
{
while(comparer.Compare(keys[++left], pivot) < 0);
while(comparer.Compare(pivot, keys[--right]) < 0);
if(left>=right)
break;
Swap(left,right);
}
//--- Put pivot in the right location.
Swap(left,(hi-1));
return (left);
}
//+------------------------------------------------------------------+
//| Heap sorting algorithm. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::Heapsort(const int lo,const int hi)
{
int n=hi-lo+1;
for(int i=n/2; i>=1; i=i-1)
{
DownHeap(i,n,lo);
}
for(int i=n; i>1; i=i-1)
{
Swap(lo,lo+i-1);
DownHeap(1,i-1,lo);
}
}
//+------------------------------------------------------------------+
//| Downheap function for heapsort. |
//+------------------------------------------------------------------+
template<typename TKey,typename TItem>
void Introsort::DownHeap(int i,const int n,const int lo)
{
bool f=ArraySize(items)!=0;
TKey d=keys[lo+i-1];
TItem dt=f ? (TItem)items[lo+i-1] : (TItem)NULL;
while(i<=n/2)
{
int child=2*i;
if(child<n && comparer.Compare(keys[lo+child-1],keys[lo+child])<0)
child++;
if(!(comparer.Compare(d,keys[lo+child-1])<0))
break;
keys[lo+i-1]=keys[lo+child-1];
if(f)
items[lo+i-1]=items[lo+child-1];
i=child;
}
keys[lo+i-1]=d;
if(f)
items[lo+i-1]=dt;
}
//+------------------------------------------------------------------+