MobinMQL/Include/Math/Stat/Cauchy.mqh
2025-07-22 14:47:41 +03:00

539 lines
24 KiB
MQL5

//+------------------------------------------------------------------+
//| Cauchy.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
//+------------------------------------------------------------------+
//| Cauchy density function (PDF) |
//+------------------------------------------------------------------+
//| Computes the value of the Cauchy probability density function |
//| with parameters a and b at the desired quantile x. |
//| |
//| f(x,a,b)= 1/(pi*b*(1.0+((x-a)/b)^2) |
//| Arguments: |
//| x : Random variable |
//| a : Mean |
//| b : Scale |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityCauchy(const double x,const double a,const double b,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check scale
if(b<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- prepare argument
double y=(x-a)/b;
//--- check result
if(!MathIsValidNumber(y))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(log_mode==true)
return -MathLog(M_PI*b*(1.0+y*y));
//--- return Cauchy density
return 1.0/(M_PI*b*(1.0+y*y));
}
//+------------------------------------------------------------------+
//| Cauchy density function (PDF) |
//+------------------------------------------------------------------+
//| Computes the value of the Cauchy probability density function |
//| with parameters a and b at the desired quantile x. |
//| |
//| f(x,a,b)= 1/(pi*b*(1.0+((x-a)/b)^2) |
//| Arguments: |
//| x : Random variable |
//| a : Mean |
//| b : Scale |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityCauchy(const double x,const double a,const double b,int &error_code)
{
return MathProbabilityDensityCauchy(x,a,b,false,error_code);
}
//+------------------------------------------------------------------+
//| Cauchy density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| Cauchy distribution with parameters a and b for values |
//| from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityCauchy(const double &x[],const double a,const double b,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- check scale
if(b<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
//--- prepare argument
double y=(x_arg-a)/b;
if(log_mode==true)
result[i]=-MathLog(M_PI*b*(1.0+y*y));
else
result[i]=(1.0/(M_PI*b*(1.0+y*y)));
}
return true;
}
//+------------------------------------------------------------------+
//| Cauchy density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| Cauchy distribution with parameters a and b for values |
//| in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityCauchy(const double &x[],const double a,const double b,double &result[])
{
return MathProbabilityDensityCauchy(x,a,b,false,result);
}
//+------------------------------------------------------------------+
//| Cauchy cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Cauchy distribution with parameters a and b |
//| is less than or equal to x. |
//| F(x,a,b)=(1/2)+(1/pi)*arctan((x-a)/b) |
//| Arguments: |
//| x : The desired quantile |
//| a : Mean |
//| b : Scale |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode flag,if true it calculates Log values|
//| error_code : Variable for error code |
//| |
//| The value of the Cauchy cumulative distribution function with |
//| parameters a and b, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionCauchy(const double x,const double a,const double b,const bool tail,const bool log_mode,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check scale
if(b<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate argument
double y=(x-a)/b;
//--- check result
if(!MathIsValidNumber(y))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- calculate probability and take into account round-off errors
double cdf=0;
if(y>-1.0)
cdf=MathMin(0.5+M_1_PI*MathArctan(y),1.0);
else
cdf=MathMin(M_1_PI*MathArctan(-1/y),1.0);
return TailLogValue(cdf,tail,log_mode);
}
//+------------------------------------------------------------------+
//| Cauchy cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the cumulative distribution function of |
//| the Cauchy distribution with parameters a and b, evaluated at x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| a : Mean |
//| b : Scale |
//| error_code : Variable for error code |
//| |
//| The value of the Cauchy cumulative distribution function with |
//| parameters a and b, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionCauchy(const double x,const double a,const double b,int &error_code)
{
return MathCumulativeDistributionCauchy(x,a,b,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Cauchy cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Cauchy distribution with parameters a and b for values from |
//| x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode flag,if true it calculates Log values|
//| error_code : Variable for error code |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionCauchy(const double &x[],const double a,const double b,const bool tail,const bool log_mode,double &result[])
{
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- check scale
if(b<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
//--- calculate argument
double y=(x_arg-a)/b;
//--- check result
if(!MathIsValidNumber(y))
return false;
//--- calculate probability and take into account round-off errors
double cdf=0;
if(y>-1.0)
cdf=MathMin(0.5+M_1_PI*MathArctan(y),1.0);
else
cdf=MathMin(M_1_PI*MathArctan(-1/y),1.0);
result[i]=TailLogValue(cdf,tail,log_mode);
}
return true;
}
//+------------------------------------------------------------------+
//| Cauchy cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function |
//| of the Cauchy distribution with parameters a and b for values |
//| from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionCauchy(const double &x[],const double a,const double b,double &result[])
{
return MathCumulativeDistributionCauchy(x,a,b,true,false,result);
}
//+------------------------------------------------------------------+
//| Cauchy distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Cauchy distribution with parameters a and b |
//| for the desired probability. |
//| Q(p,a,b)=a+b*tan*(pi*(p-1/2)) |
//| Arguments: |
//| probability : The desired probability |
//| a : Mean |
//| b : Scale |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Cauchy distribution with parameters a and b. |
//+------------------------------------------------------------------+
double MathQuantileCauchy(const double probability,const double a,const double b,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(probability) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check scale
if(b<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- f(1)= + infinity
if(prob==1.0)
{
error_code=ERR_RESULT_INFINITE;
return QPOSINF;
}
//--- f(0)= - infinity
if(prob==0.0)
{
error_code=ERR_RESULT_INFINITE;
return QNEGINF;
}
error_code=ERR_OK;
//--- return quantile
return a+b*MathTan(M_PI*(prob-0.5));
}
//+------------------------------------------------------------------+
//| Cauchy distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Cauchy distribution with parameters a and b |
//| for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| a : Mean |
//| b : Scale |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Cauchy distribution with parameters a and b. |
//+------------------------------------------------------------------+
double MathQuantileCauchy(const double probability,const double a,const double b,int &error_code)
{
return MathQuantileCauchy(probability,a,b,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Cauchy distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Cauchy distribution with parameters a and b |
//| for the probability values from array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| a : Mean |
//| b : Scale |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileCauchy(const double &probability[],const double a,const double b,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- check scale
if(b<=0.0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
if(!MathIsValidNumber(probability[i]))
return false;
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
//--- f(1)= + infinity
if(prob==1.0)
result[i]=QPOSINF;
else
//--- f(0)= - infinity
if(prob==0.0)
result[i]=QNEGINF;
else
result[i]=a+b*MathTan(M_PI*(prob-0.5));
}
return true;
}
//+------------------------------------------------------------------+
//| Cauchy distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
bool MathQuantileCauchy(const double &probability[],const double a,const double b,double &result[])
{
return MathQuantileCauchy(probability,a,b,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Cauchy distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Cauchy distribution |
//| with parameters a and b. |
//| |
//| Arguments: |
//| a : Mean |
//| b : Scale |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Cauchy distribution. |
//+------------------------------------------------------------------+
double MathRandomCauchy(const double a,const double b,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check scale
if(b<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check scale=0
if(b==0.0)
return a;
//--- generate random number
double rnd=MathRandomNonZero();
//--- return result
return a+b*MathTan(M_PI*(rnd-0.5));
}
//+------------------------------------------------------------------+
//| Random variate from the Cauchy distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Cauchy distribution with |
//| parameters a and b. |
//| |
//| Arguments: |
//| a : Mean |
//| b : Scale |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomCauchy(const double a,const double b,const int data_count,double &result[])
{
//--- check parameters
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
return false;
//--- check scale
if(b<0)
return false;
//--- prepare output array
ArrayResize(result,data_count);
//--- check scale=0
if(b==0.0)
{
for(int i=0; i<data_count; i++)
result[i]=a;
}
else
//--- calculate random values
for(int i=0; i<data_count; i++)
{
//--- generate random number
double rnd=MathRandomNonZero();
result[i]=a+b*MathTan(M_PI*(rnd-0.5));
}
return true;
}
//+------------------------------------------------------------------+
//| Cauchy distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of Cauchy distribution |
//| with parameters a and b. |
//| |
//| Arguments: |
//| a : Mean |
//| b : Scale |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsCauchy(const double a,const double b,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
error_code=ERR_OK;
//--- set theoretical values for moments (undefined)
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- successful
return true;
}
//+------------------------------------------------------------------+