MobinMQL/Include/Math/Stat/Hypergeometric.mqh
2025-07-22 14:47:41 +03:00

754 lines
34 KiB
MQL5

//+------------------------------------------------------------------+
//| Hypergeometric.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
//+------------------------------------------------------------------+
//| Hypergeometric probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Hypergeometric distribution with parameters m,n,k. |
//| f(x,m,k,n)=C(k,x)*C(m-k,n-x)/C(m,n) |
//| where binomial coefficient C(n,k)=n!/(k!*(n-k)! |
//| |
//| Arguments: |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass function, evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityHypergeometric(const double x,const double m,const double k,const double n,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
{
error_code=ERR_ARGUMENTS_NAN;
return(QNaN);
}
//--- m,k,n must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
{
error_code=ERR_ARGUMENTS_INVALID;
return(QNaN);
}
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return(QNaN);
}
//--- check ranges
if(n>m || k>m)
{
error_code=ERR_ARGUMENTS_INVALID;
return(QNaN);
}
error_code=ERR_OK;
//--- check ranges
if(x>n)
return TailLog0(true,log_mode);
if(x>k || m-k-n+x+1<=0)
return TailLog0(true,log_mode);
//--- calculate log binomial coefficients
double log_pdf=MathBinomialCoefficientLog(k,x)+MathBinomialCoefficientLog(m-k,n-x)-MathBinomialCoefficientLog(m,n);
if(log_mode==true)
return log_pdf;
//--- return hypergeometric density
return MathExp(log_pdf);
}
//+------------------------------------------------------------------+
//| Hypergeometric probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Hypergeometric distribution with parameters m,n,k. |
//| f(x,m,k,n)=C(k,x)*C(m-k,n-x)/C(m,n) |
//| where binomial coefficient C(n,k)=n!/(k!*(n-k)! |
//| |
//| Arguments: |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass function, evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityHypergeometric(const double x,const double m,const double k,const double n,int &error_code)
{
return MathProbabilityDensityHypergeometric(x,m,k,n,false,error_code);
}
//+------------------------------------------------------------------+
//| Hypergeometric probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability mass function of the |
//| Hypergeometric distribution with parameter m,k,n for values in x.|
//| |
//| Arguments: |
//| x : Array with random variables |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityHypergeometric(const double &x[],const double m,const double k,const double n,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
return false;
//--- m,k,n must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
return false;
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
return false;
//--- check ranges
if(n>m || k>m)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
double m_k=m-k;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<0 || x_arg!=MathRound(x_arg))
return false;
if(x_arg>n)
result[i]=TailLog0(true,log_mode);
else
//--- check ranges
if(x_arg>k || m_k-n+x_arg+1<=0)
result[i]=TailLog0(true,log_mode);
else
{
//--- calculate log binomial coefficients
double log_pdf=MathBinomialCoefficientLog(k,x_arg)+MathBinomialCoefficientLog(m_k,n-x_arg)-MathBinomialCoefficientLog(m,n);
if(log_mode==true)
result[i]=log_pdf;
else
result[i]=MathExp(log_pdf);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Hypergeometric probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability mass function of the |
//| Hypergeometric distribution with parameter m,k,n for values in x.|
//| |
//| Arguments: |
//| x : Array with random variables |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityHypergeometric(const double &x[],const double m,const double k,const double n,double &result[])
{
return MathProbabilityDensityHypergeometric(x,m,k,n,false,result);
}
//+------------------------------------------------------------------+
//| Hypergeometric cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Hypergeometric distribution with parameters m,n,k |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Hypergeometric cumulative distribution function |
//| with parameters m,n,k, evaluated at x. |
//+------------------------------------------------------------------+
//| Based on algorithm by John Burkardt |
//+------------------------------------------------------------------+
double MathCumulativeDistributionHypergeometric(const double x,const double m,const double k,const double n,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n) || x!=MathRound(x))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- m,k,n,x must be positive
if(m<0 || k<0 || n<0 || x<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check ranges
if(n>m || k>m)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x>=n || x>=k)
return TailLog1(tail,log_mode);
//--- calculate cdf
double pdf = MathExp(MathBinomialCoefficientLog(m-k,n)-MathBinomialCoefficientLog(m,n));
double cdf = pdf;
double coef=m-k-n+1;
for(int j=0; j<=x-1; j++)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
}
return TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
//+------------------------------------------------------------------+
//| Hypergeometric cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Hypergeometric distribution with parameters m,n,k |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired number of objects |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Hypergeometric cumulative distribution function |
//| with parameters m,n,k, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionHypergeometric(const double x,const double m,const double k,const double n,int &error_code)
{
return MathCumulativeDistributionHypergeometric(x,m,k,n,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Hypergeometric cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Hypergeometric distribution with parameters m,k,n for |
//| the values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
//| Based on algorithm by John Burkardt |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionHypergeometric(const double &x[],const double m,const double k,const double n,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
return false;
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
return false;
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
return false;
//--- check ranges
if(n>m || k>m)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
double coef=m-k-n+1;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
//--- x must be positive and integer
if(x_arg<0 || x_arg!=MathRound(x_arg))
return false;
//--- check ranges
if(x_arg>=n || x_arg>=k)
result[i]=TailLog1(tail,log_mode);
else
{
//--- calculate cdf
double pdf = MathExp(MathBinomialCoefficientLog(m-k,n)-MathBinomialCoefficientLog(m,n));
double cdf = pdf;
for(int j=0; j<=x_arg-1; j++)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
}
result[i]=TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Hypergeometric cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Hypergeometric distribution with parameters m,k,n for |
//| the values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionHypergeometric(const double &x[],const double m,const double k,const double n,double &result[])
{
return MathCumulativeDistributionHypergeometric(x,m,k,n,true,false,result);
}
//+------------------------------------------------------------------+
//| Hypergeometric distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| Computes the inverse cumulative distribution function of the |
//| Hypergeometric distribution with parameters m,n,k for the |
//| desired probability. |
//| |
//| Arguments: |
//| probability : The probability |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates for Log values|
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The smallest value x, such that the hypergeometric CDF(x) |
//| equals or exceeds the desired probability. |
//+------------------------------------------------------------------+
//| Based on algorithm by John Burkardt |
//+------------------------------------------------------------------+
double MathQuantileHypergeometric(const double probability,const double m,const double k,const double n,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(probability) || !MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check ranges
if(n>m || k>m)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check probability
if(prob==0)
return 0.0;
if(prob==1.0)
return QPOSINF;
int max_terms=1000;
prob*=1-1000*DBL_EPSILON;
double m_k=m-k;
double pdf = MathExp(MathBinomialCoefficientLog(m_k,n)-MathBinomialCoefficientLog(m,n));
double cdf = pdf;
double coef=m_k-n+1;
int j=0;
while(cdf<prob && j<max_terms)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
j++;
}
return j;
}
//+------------------------------------------------------------------+
//| Hypergeometric distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| Computes the inverse cumulative distribution function of the |
//| Hypergeometric distribution with parameters m,n,k for the |
//| desired probability. |
//| |
//| Arguments: |
//| probability : The probability |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The smallest value x, such that the hypergeometric CDF(x) |
//| equals or exceeds the desired probability. |
//+------------------------------------------------------------------+
double MathQuantileHypergeometric(const double probability,const double m,const double k,const double n,int &error_code)
{
return MathQuantileHypergeometric(probability,m,k,n,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Hypergeometric distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Hypergeometric distribution with parameters |
//| m,k,n for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates for Log values|
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
//| Based on algorithm by John Burkardt |
//+------------------------------------------------------------------+
bool MathQuantileHypergeometric(const double &probability[],const double m,const double k,const double n,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
return false;
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
return false;
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
return false;
//--- check ranges
if(n>m || k>m)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int max_terms=1000;
double m_k=m-k;
double pdf0= MathExp(MathBinomialCoefficientLog(m_k,n)-MathBinomialCoefficientLog(m,n));
double coef=m_k-n+1;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
//--- check probability
if(prob==0.0)
result[i]=0.0;
else
if(prob==1.0)
result[i]=QPOSINF;
else
{
prob*=1-1000*DBL_EPSILON;
double pdf = pdf0;
double cdf = pdf;
int j=0;
while(cdf<prob && j<max_terms)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
j++;
}
result[i]=j;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Hypergeometric distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Hypergeometric distribution with parameters |
//| m,k,n for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileHypergeometric(const double &probability[],const double m,const double k,const double n,double &result[])
{
return MathQuantileHypergeometric(probability,m,k,n,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Hypergeometric distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Hypergeometric distribution |
//| with parameters m,n,k. |
//| |
//| Arguments: |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Hypergeometric distribution. |
//+------------------------------------------------------------------+
//| Author: John Burkardt |
//| |
//| Reference: |
//| Jerry Banks, editor, Handbook of Simulation, |
//| Engineering and Management Press Books, 1998, page 165. |
//+------------------------------------------------------------------+
double MathRandomHypergeometric(const double m,const double k,const double n,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check ranges
if(n>m || k>m)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- generate random number
double prob=MathRandomNonZero();
prob*=1-1000*DBL_EPSILON;
int max_terms=1000;
double m_k=m-k;
double coef=m_k-n+1;
double pdf= MathExp(MathBinomialCoefficientLog(m_k,n)-MathBinomialCoefficientLog(m,n));
double cdf= pdf;
int j=0;
while(cdf<prob && j<max_terms)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
j++;
}
return j;
}
//+------------------------------------------------------------------+
//| Random variate from the Hypergeometric distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Hypergeometric distribution |
//| with parameters m,k,n. |
//| |
//| Arguments: |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomHypergeometric(const double m,const double k,const double n,const int data_count,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
return false;
//--- m,k,n,x must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
return false;
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
return false;
//--- check ranges
if(n>m || k>m)
return false;
//--- prepare coefficients
int max_terms=1000;
double m_k=m-k;
double coef=m_k-n+1;
double pdf0= MathExp(MathBinomialCoefficientLog(m_k,n)-MathBinomialCoefficientLog(m,n));
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- generate random number
double prob=MathRandomNonZero();
prob*=1-1000*DBL_EPSILON;
//--- calculate using quantile
double pdf = pdf0;
double cdf = pdf;
int j=0;
while(cdf<prob && j<max_terms)
{
pdf = pdf*(k-j)*(n-j)/((j+1)*(coef+j));
cdf = cdf + pdf;
j++;
}
result[i]=j;
}
return true;
}
//+------------------------------------------------------------------+
//| Hypergeometric distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of the Hypergeometric |
//| distribution with parameters m,n,k. |
//| |
//| Arguments: |
//| m : Size of the population |
//| k : Number of items with the desired characteristic |
//| in the population |
//| n : Number of samples drawn |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsHypergeometric(const double m,const double k,const double n,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(m) || !MathIsValidNumber(k) || !MathIsValidNumber(n))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- m,k,n must be integer
if(m!=MathRound(m) || k!=MathRound(k) || n!=MathRound(n))
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
//--- m,k,n must be positive
if(m<0 || k<0 || n<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
//--- check ranges
if(n>m || k>m)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
mean =n*k/m;
variance=k*n*(1-k/m)*(m-n)/(m*(m-1));
skewness=MathSqrt(m-1)*(m-2*k)*(m-2*n)/((m-2)*MathSqrt(k*n*(m-k)*(m-n)));
kurtosis=(m-1)*m*m/(k*n*(m-3)*(m-2)*(m-k)*(m-n));
kurtosis*=3*k*(m-k)*(m*m*(n-2)-m*n*n+6*n*(m-n))/(m*m)-6*n*(m-n)+m*(m+1);
kurtosis-=3;
//--- successful
return true;
}
//+------------------------------------------------------------------+