MobinMQL/Include/Math/Stat/NegativeBinomial.mqh
2025-07-22 14:47:41 +03:00

643 lines
28 KiB
MQL5

//+------------------------------------------------------------------+
//| NegativeBinomial.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
#include "Gamma.mqh"
#include "Poisson.mqh"
//+------------------------------------------------------------------+
//| Negative Binomial probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Negative Binomial distribution with parameters r and p. |
//| |
//| Arguments: |
//| x : Random variable |
//| r : Number of successes |
//| p : Probability of success |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNegativeBinomial(const double x,const double r,const double p,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(r) || !MathIsValidNumber(p))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<0.0)
return TailLog0(true,log_mode);
//--- calculate gamma factor for the density
double coef=MathRound(MathExp(MathGammaLog(r+x)-MathGammaLog(x+1.0)-MathGammaLog(r)));
//--- return density
return TailLogValue(coef*MathPow(p,r)*MathPow(1.0-p,x),true,log_mode);
}
//+------------------------------------------------------------------+
//| Negative Binomial probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Negative Binomial distribution with parameters r and p. |
//| |
//| Arguments: |
//| x : Random variable |
//| r : Number of successes |
//| p : Probability of success |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNegativeBinomial(const double x,const double r,const double p,int &error_code)
{
return MathProbabilityDensityNegativeBinomial(x,r,p,false,error_code);
}
//+------------------------------------------------------------------+
//| Negative Binomial probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability mass function |
//| of the Negative Binomial distribution with parameters r and p |
//| for values from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| r : Number of successes |
//| p : Probability of success |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNegativeBinomial(const double &x[],const double r,const double p,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
return false;
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
double power_p_r=MathPow(p,r);
double log_gamma_r=MathGammaLog(r);
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<0.0)
result[i]=TailLog0(true,log_mode);
else
{
//--- calculate pdf
double pdf=power_p_r*MathPow(1.0-p,x_arg)*MathRound(MathExp(MathGammaLog(r+x_arg)-MathGammaLog(x_arg+1.0)-log_gamma_r));
result[i]=TailLogValue(pdf,true,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Negative Binomial probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability mass function |
//| of the Negative Binomial distribution with parameters r and p |
//| for values from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| r : Number of successes |
//| p : Probability of success |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNegativeBinomial(const double &x[],const double r,const double p,double &result[])
{
return MathProbabilityDensityNegativeBinomial(x,r,p,false,result);
}
//+------------------------------------------------------------------+
//| Negative Binomial cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Negative Binomial distribution with parameters r and p |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| r : Number of successes |
//| p : Probability of success |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Negative Binomial cumulative distribution |
//| function with parameters r and p, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNegativeBinomial(const double x,const double r,double p,const bool tail,const bool log_mode,int error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(r) || !MathIsValidNumber(p))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0 || x<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
if(x<0.0)
return TailLog0(tail,log_mode);
int err_code=0;
//--- calculate max term of the sum
int max_j=(int)MathFloor(x);
double p1=1.0-p;
//--- initial factors
double factor1=MathFactorial((int)r-1);
double factor2=1.0;
double factor_p=1.0;
double factor_r=1.0/factor1;
double power_p_r=MathPowInt(p,int(r))*factor_r;
double cdf=0.0;
for(int j=0; j<=max_j; j++)
{
if(j>0)
{
factor1*=(j+1);
factor2*=j;
factor_p*=p1;
}
double pdf=power_p_r*factor1*factor_p/factor2;
cdf+=pdf;
}
//--- take into account round-off errors for probability
return TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
//+------------------------------------------------------------------+
//| Negative Binomial cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Negative Binomial distribution with parameters r and p |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| r : Number of successes |
//| p : Probability of success |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Negative Binomial cumulative distribution |
//| function with parameters r and p, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNegativeBinomial(const double x,const double r,double p,int error_code)
{
return MathCumulativeDistributionNegativeBinomial(x,r,p,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Negative Binomial cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function |
//| of the Negative Binomial distribution with parameters r and p |
//| for values from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| r : Number of successes |
//| p : Probability of success |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNegativeBinomial(const double &x[],const double r,double p,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
return false;
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
//--- common factors
double fact1=MathFactorial((int)r-1);
double factor_r=1.0/fact1;
double power_p_r=MathPowInt(p,int(r))*factor_r;
double p1=1.0-p;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<0.0)
result[i]=TailLog0(tail,log_mode);
else
{
int err_code=0;
//--- calculate max term of the sum
int max_j=(int)MathFloor(x_arg);
//--- initial factors
double factor1=fact1;
double factor2=1.0;
double factor_p=1.0;
double cdf=0.0;
for(int j=0; j<=max_j; j++)
{
if(j>0)
{
factor1*=(j+1);
factor2*=j;
factor_p*=p1;
}
double pdf=power_p_r*factor1*factor_p/factor2;
cdf+=pdf;
}
//--- take into account round-off errors for probability
result[i]=TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Negative Binomial cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function |
//| of the Negative Binomial distribution with parameters r and p |
//| for values from x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| r : Number of successes |
//| p : Probability of success |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNegativeBinomial(const double &x[],const double r,double p,double &result[])
{
return MathCumulativeDistributionNegativeBinomial(x,r,p,true,false,result);
}
//+------------------------------------------------------------------+
//| Negative Binomial distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Negative Binomial distribution with parameters |
//| r and p for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| r : Number of successes |
//| p : Probability of success |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Negative Binomial distribution with parameters r and p. |
//+------------------------------------------------------------------+
double MathQuantileNegativeBinomial(const double probability,const double r,const double p,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(probability) || !MathIsValidNumber(r) || !MathIsValidNumber(p))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check cases p=0 and p=1
if(prob==1.0)
{
error_code=ERR_RESULT_INFINITE;
return QPOSINF;
}
error_code=ERR_OK;
if(prob==0.0)
return 0.0;
int max_terms=1000;
int err_code=0;
//--- factors
double fact1=MathFactorial((int)r-1);
double factor_r=1.0/fact1;
double power_p_r=MathPowInt(p,int(r))*factor_r;
double p1=1.0-p;
//--- initial factors
double factor1=fact1;
double factor2=1.0;
double factor_p=1.0;
double cdf=0.0;
int j=0;
while(cdf<prob && j<max_terms)
{
if(j>0)
{
factor1*=(j+1);
factor2*=j;
factor_p*=p1;
}
double pdf=power_p_r*factor1*factor_p/factor2;
cdf+=pdf;
j++;
}
//--- check convergence
if(j<max_terms)
{
if(j==0)
return 0;
else
return j-1;
}
else
{
error_code=ERR_NON_CONVERGENCE;
return 0;
}
}
//+------------------------------------------------------------------+
//| Negative Binomial distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Negative Binomial distribution with parameters |
//| r and p for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| r : Number of successes |
//| p : Probability of success |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Negative Binomial distribution with parameters r and p. |
//+------------------------------------------------------------------+
double MathQuantileNegativeBinomial(const double probability,const double r,const double p,int &error_code)
{
return MathQuantileNegativeBinomial(probability,r,p,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Negative Binomial distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Negative Binomial distribution with parameters |
//| r and p for values form the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| r : Number of successes |
//| p : Probability of success |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNegativeBinomial(const double &probability[],const double r,const double p,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
return false;
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<0.0 || p>1.0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
//--- common factors
double fact1=MathFactorial((int)r-1);
double factor_r=1.0/fact1;
double power_p_r=MathPowInt(p,int(r))*factor_r;
double p1=1.0-p;
int max_terms=500;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
if(prob==0.0)
result[i]=0.0;
else
if(prob==1.0)
result[i]=QPOSINF;
else
{
double factor1=fact1;
double factor2=1.0;
double factor_p=1.0;
double cdf=0.0;
int j=0;
while(cdf<prob && j<max_terms)
{
if(j>0)
{
factor1*=(j+1);
factor2*=j;
factor_p*=p1;
}
double pdf=power_p_r*factor1*factor_p/factor2;
cdf+=pdf;
j++;
}
if(j<max_terms)
{
if(j==0)
result[i]=0;
else
result[i]=j-1;
}
else
return false;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Negative Binomial distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Negative Binomial distribution with parameters |
//| r and p for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| r : Number of successes |
//| p : Probability of success |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNegativeBinomial(const double &probability[],const double r,const double p,double &result[])
{
return MathQuantileNegativeBinomial(probability,r,p,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Negative Binomial distribution |
//+------------------------------------------------------------------+
//| Computes the random variable from the Negative Binomial |
//| distribution with parameters r and p. |
//| |
//| Arguments: |
//| r : Number of successes |
//| p : Probability of success |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Negative Binomial distribution. |
//+------------------------------------------------------------------+
double MathRandomNegativeBinomial(const double r,const double p,int error_code)
{
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check arguments
if(r<=0.0 || p<=0.0 || p>=1.0)
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
double r_gamma=MathRandomGamma(r,(1-p)/p);
return MathRandomPoisson(r_gamma,error_code);
}
//+------------------------------------------------------------------+
//| Random variate from the Negative Binomial distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Negative Binomial |
//| distribution with parameters r and p. |
//| |
//| Arguments: |
//| r : Number of successes |
//| p : Probability of success |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomNegativeBinomial(const double r,const double p,const int data_count,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
return false;
//--- check arguments
if(r<=0.0 || p<=0.0 || p>=1.0)
return false;
double p_coef=(1-p)/p;
int error_code=0;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double r_gamma=MathRandomGamma(r,p_coef);
result[i]=MathRandomPoisson(r_gamma,error_code);
}
return true;
}
//+------------------------------------------------------------------+
//| Negative Binomial distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of Negative Binomial |
//| distribution with parameters r and p. |
//| |
//| Arguments: |
//| r : Number of successes |
//| p : Probability of success |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsNegativeBinomial(const double r,double p,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(r) || !MathIsValidNumber(p))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- check arguments
if(r!=MathRound(r) || r<1.0 || p<=0.0 || p>=1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
mean =r*(1.0-p)/p;
variance=mean/p;
skewness=(2.0-p)/MathSqrt((r*(1.0-p)));
kurtosis=(p*p-6*p+6)/(r*(1.0-p));
//--- successful
return true;
}
//+------------------------------------------------------------------+