574 lines
26 KiB
MQL5
574 lines
26 KiB
MQL5
//+------------------------------------------------------------------+
|
|
//| Weibull.mqh |
|
|
//| Copyright 2000-2025, MetaQuotes Ltd. |
|
|
//| https://www.mql5.com |
|
|
//+------------------------------------------------------------------+
|
|
#include "Math.mqh"
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Weibull distribution with parameters a and b. |
|
|
//| f(x,a,b)=[(a/b)*(x/b)^(a-1)]*exp(-(x/b)^a) |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityWeibull(const double x,const double a,const double b,const bool log_mode,int &error_code)
|
|
{
|
|
//--- f(-infinity)=f(infinity)=0
|
|
if(x==QPOSINF || x==QNEGINF)
|
|
{
|
|
error_code=ERR_OK;
|
|
return TailLog0(true,log_mode);
|
|
}
|
|
//--- check parameters
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- check x
|
|
if(x<=0)
|
|
return TailLog0(true,log_mode);
|
|
//--- calculate factor
|
|
double pwr=MathPow(x/b,a-1);
|
|
double pdf=(a/b)*pwr*MathExp(-(x/b)*pwr);
|
|
if(log_mode==true)
|
|
return MathLog(pdf);
|
|
//--- return density
|
|
return pdf;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Weibull distribution with parameters a and b. |
|
|
//| f(x,a,b)=[(a/b)*(x/b)^(a-1)]*exp(-(x/b)^a) |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityWeibull(const double x,const double a,const double b,int &error_code)
|
|
{
|
|
return MathProbabilityDensityWeibull(x,a,b,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of the |
|
|
//| Weibull distribution with parameters a and b for values in x[]. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityWeibull(const double &x[],const double a,const double b,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
return false;
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
//--- f(-infinity)=f(infinity)=0
|
|
if(x_arg==QPOSINF || x_arg==QNEGINF)
|
|
result[i]=TailLog0(true,log_mode);
|
|
else
|
|
if(x_arg<=0)
|
|
result[i]=TailLog0(true,log_mode);
|
|
else
|
|
{
|
|
//--- calculate factor
|
|
double pwr=MathPow(x_arg/b,a-1);
|
|
double pdf=(a/b)*pwr*MathExp(-(x_arg/b)*pwr);
|
|
if(log_mode==true)
|
|
result[i]=MathLog(pdf);
|
|
else
|
|
result[i]=pdf;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of the |
|
|
//| Weibull distribution with parameters a and b for values in x[]. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityWeibull(const double &x[],const double a,const double b,double &result[])
|
|
{
|
|
return MathProbabilityDensityWeibull(x,a,b,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Weibull distribution with parameters a and b |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Weibull cumulative distribution function |
|
|
//| F(a,b)=1-exp(-(x/b)^a) |
|
|
//| with parameters a and b, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionWeibull(const double x,const double a,const double b,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
//--- f(-infinity)=0
|
|
if(x==QNEGINF)
|
|
{
|
|
error_code=ERR_OK;
|
|
return TailLog0(tail,log_mode);
|
|
}
|
|
//--- f(+infinity)=1
|
|
if(x==QPOSINF)
|
|
{
|
|
error_code=ERR_OK;
|
|
return TailLog1(tail,log_mode);
|
|
}
|
|
//--- check parameters
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- check x
|
|
if(x<=0)
|
|
return TailLog0(tail,log_mode);
|
|
//--- calculate probability and take into account round-off errors
|
|
double cdf=MathMin(1.0-MathExp(-MathPow(x/b,a)),1.0);
|
|
return TailLogValue(cdf,tail,log_mode);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Weibull distribution with parameters a and b |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Weibull cumulative distribution function |
|
|
//| F(a,b)=1-exp(-(x/b)^a) |
|
|
//| with parameters a and b, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionWeibull(const double x,const double a,const double b,int &error_code)
|
|
{
|
|
return MathCumulativeDistributionWeibull(x,a,b,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Weibull distribution with parameters a and b for values in x.|
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionWeibull(const double &x[],const double a,const double b,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
return false;
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
//--- f(-infinity)=0, f(+infinity)=1
|
|
if(x_arg==QNEGINF)
|
|
result[i]=TailLog0(tail,log_mode);
|
|
else
|
|
//--- f(+infinity)=1
|
|
if(x_arg==QPOSINF)
|
|
result[i]=TailLog1(tail,log_mode);
|
|
else
|
|
//--- check x
|
|
if(x_arg<=0)
|
|
result[i]=TailLog0(tail,log_mode);
|
|
else
|
|
{
|
|
//--- calculate probability and take into account round-off errors
|
|
double cdf=MathMin(1.0-MathExp(-MathPow(x_arg/b,a)),1.0);
|
|
result[i]=TailLogValue(cdf,tail,log_mode);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Weibull distribution with parameters a and b for values in x.|
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionWeibull(const double &x[],const double a,const double b,double &result[])
|
|
{
|
|
return MathCumulativeDistributionWeibull(x,a,b,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of Weibull distribution |
|
|
//| Q(p,a,b)=b*((-ln(1-p)))^(1/a) |
|
|
//| with parameters a and b for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| tail : Flag to calculate for lower tail |
|
|
//| log_mode : Logarithm mode,if true it calculates for Log values|
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the inverse cumulative distribution function |
|
|
//| of the Weibull distribution with parameters a and b. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileWeibull(const double probability,const double a,const double b,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability,tail,log_mode);
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- f(1)=+infinity
|
|
if(prob==1.0)
|
|
{
|
|
error_code=ERR_RESULT_INFINITE;
|
|
return QPOSINF;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- f(0)=0
|
|
if(prob==0.0)
|
|
return 0.0;
|
|
//--- return quantile
|
|
return b*MathPow(-MathLog(1.0-prob),1.0/a);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of the Weibull distribution |
|
|
//| Q(p,a,b)=b*((-ln(1-p)))^(1/a) |
|
|
//| with parameters a and b for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the inverse cumulative distribution function |
|
|
//| of the Weibull distribution with parameters a and b. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileWeibull(const double probability,const double a,const double b,int &error_code)
|
|
{
|
|
return MathQuantileWeibull(probability,a,b,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Weibull distribution with parameters a and b |
|
|
//| for the probability values from array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileWeibull(const double &probability[],const double a,const double b,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
return false;
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(probability);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability[i],tail,log_mode);
|
|
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
return false;
|
|
|
|
//--- f(1)=+infinity
|
|
if(prob==1.0)
|
|
result[i]=QPOSINF;
|
|
//--- f(0)=0
|
|
if(prob==0.0)
|
|
result[i]=0.0;
|
|
else
|
|
//--- calc quantile
|
|
result[i]=b*MathPow(-MathLog(1.0-prob),1.0/a);
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Weibull distribution with parameters a and b |
|
|
//| for values from the probability[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileWeibull(const double &probability[],const double a,const double b,double &result[])
|
|
{
|
|
return MathQuantileWeibull(probability,a,b,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Weibull distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Computes the random variable from the Weibull distribution |
|
|
//| with shape a and scale b. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The random value with Weibull distribution. |
|
|
//+------------------------------------------------------------------+
|
|
double MathRandomWeibull(const double a,const double b,int &error_code)
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- generate random number
|
|
double rnd=MathRandomNonZero();
|
|
return b*MathPow(-MathLog(rnd),1.0/a);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Weibull distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Generates random variables from the Weibull distribution with |
|
|
//| parameters a and b. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| data_count : Number of values needed |
|
|
//| result : Output array with random values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathRandomWeibull(const double a,const double b,const int data_count,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
return false;
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
return false;
|
|
|
|
//--- prepare output array and calculate random values
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
//--- generate random number
|
|
double rnd=MathRandomNonZero();
|
|
result[i]=b*MathPow(-MathLog(rnd),1.0/a);
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Weibull distribution moments |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates 4 first moments of the Weibull |
|
|
//| distribution with parameters a and b. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| a : Shape parameter of the distribution (a>0) |
|
|
//| b : Scale parameter of the distribution (b>0) |
|
|
//| mean : Variable for mean value (1st moment) |
|
|
//| variance : Variable for variance value (2nd moment) |
|
|
//| skewness : Variable for skewness value (3rd moment) |
|
|
//| kurtosis : Variable for kurtosis value (4th moment) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if moments calculated successfully, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathMomentsWeibull(const double a,const double b,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
|
|
{
|
|
//--- default values
|
|
mean =QNaN;
|
|
variance=QNaN;
|
|
skewness=QNaN;
|
|
kurtosis=QNaN;
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(a) || !MathIsValidNumber(b))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return false;
|
|
}
|
|
//--- a and b must be positive
|
|
if(a<=0 || b<=0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return false;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- Gamma function values
|
|
double g1 = MathGamma(1+1.0/a);
|
|
double g2 = MathGamma(1+2.0/a);
|
|
double g3 = MathGamma(1+3.0/a);
|
|
double g4 = MathGamma(1+4.0/a);
|
|
//--- calculate moments
|
|
mean =b*g1;
|
|
variance=b*b*g2-MathPow(g1,2);
|
|
skewness=(2*g1*g1*g1-3*g1*g2+g3)*MathPow(g2-g1*g1,-1.5);
|
|
kurtosis=(-6*MathPow(g1,4)+12*MathPow(g1,2)*g2-3*MathPow(g2,2)-4*g1*g3+g4)*MathPow(g2-g1*g1,-2);
|
|
//--- successful
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|