mql-for-begginers/Include/Math/Stat/Exponential.mqh

521 lines
24 KiB
MQL5
Raw Permalink Normal View History

2025-07-22 18:30:17 +03:00
//+------------------------------------------------------------------+
//| Exponential.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
//+------------------------------------------------------------------+
//| Exponential density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function of |
//| the Exponential distribution with parameter mu. |
//| f(x,mu)=(1/mu)*exp(-x/mu) |
//| Arguments: |
//| x : Random variable |
//| mu : Mean |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityExponential(const double x,const double mu,const bool log_mode,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(x) || !MathIsValidNumber(mu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- mu must be positive
if(mu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check x
if(x<0.0)
return TailLog0(true,log_mode);
//--- calculate lambda;
double lambda=1.0/mu;
if(log_mode==true)
return MathLog(lambda*MathExp(-x*lambda));
//--- return density
return lambda*MathExp(-x*lambda);
}
//+------------------------------------------------------------------+
//| Exponential density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function of |
//| the Exponential distribution with parameter mu. |
//| f(x,mu)=(1/mu)*exp(-x/mu) |
//| Arguments: |
//| x : Random variable |
//| mu : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityExponential(const double x,const double mu,int &error_code)
{
return MathProbabilityDensityExponential(x,mu,false,error_code);
}
//+------------------------------------------------------------------+
//| Exponential density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Exponential distribution with parameter mu for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| mu : Mean |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityExponential(const double &x[],const double mu,const bool log_mode,double &result[])
{
//--- check parameters
if(!MathIsValidNumber(mu))
return false;
//--- mu must be positive
if(mu<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<0.0)
result[i]=TailLog0(true,log_mode);
else
{
//--- calculate lambda;
double lambda=1.0/mu;
if(log_mode==true)
result[i]=MathLog(lambda*MathExp(-x_arg*lambda));
else
result[i]=lambda*MathExp(-x_arg*lambda);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Exponential density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Exponential distribution with parameter mu for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityExponential(const double &x[],const double mu,double &result[])
{
return MathProbabilityDensityExponential(x,mu,false,result);
}
//+------------------------------------------------------------------+
//| Exponential cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the cumulative distribution functin of the |
//| Exponential distribution with parameter mu, evaluated at x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| mu : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Exponential cumulative distribution function |
//| with parameter mu, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionExponential(const double x,const double mu,const bool tail,const bool log_mode,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(x) || !MathIsValidNumber(mu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check mu
if(mu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check x
if(x<0.0)
return TailLog0(tail,log_mode);
//--- calculate cdf and take into account round-off errors for probability
double result=MathMin(1.0-MathExp(-x/mu),1.0);
return TailLogValue(result,tail,log_mode);
}
//+------------------------------------------------------------------+
//| Exponential cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the cumulative distribution function of the |
//| Exponential distribution with parameter mu, evaluated at x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| mu : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Exponential cumulative distribution function |
//| with parameter mu, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionExponential(const double x,const double mu,int &error_code)
{
return MathCumulativeDistributionExponential(x,mu,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Exponential cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Exponential distribution with parameter mu for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionExponential(const double &x[],const double mu,const bool tail,const bool log_mode,double &result[])
{
//--- check parameters
if(!MathIsValidNumber(mu))
return false;
//--- check mu
if(mu<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg<0.0)
result[i]=TailLog0(tail,log_mode);
else
{
//--- calculate cdf and take into account round-off errors for probability
double cdf=MathMin(1.0-MathExp(-x_arg/mu),1.0);
result[i]=TailLogValue(cdf,tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Exponential cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distirbution function of |
//| the Exponential distribution with parameter mu for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| a : Mean |
//| b : Scale |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionExponential(const double &x[],const double mu,double &result[])
{
return MathCumulativeDistributionExponential(x,mu,true,false,result);
}
//+------------------------------------------------------------------+
//| Exponential distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Exponential distribution with parameter mu |
//| for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| mu : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Exponential distribution with parameter mu. |
//+------------------------------------------------------------------+
double MathQuantileExponential(const double probability,const double mu,const bool tail,const bool log_mode,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(mu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- mu must be positive
if(mu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check zero probability case
if(prob==0.0)
return 0.0;
else
if(prob==1.0)
return QPOSINF;
//--- return quantile
return -mu*MathLog(1.0-prob);
}
//+------------------------------------------------------------------+
//| Exponential distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of Exponential distribution with parameter mu |
//| for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| mu : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Exponential distribution with parameter mu. |
//+------------------------------------------------------------------+
double MathQuantileExponential(const double probability,const double mu,int &error_code)
{
return MathQuantileExponential(probability,mu,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Exponential distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Exponential distribution with parameter mu |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| mu : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileExponential(const double &probability[],const double mu,const bool tail,const bool log_mode,double &result[])
{
//--- check parameters
if(!MathIsValidNumber(mu))
return false;
//--- mu must be positive
if(mu<=0.0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
//--- check zero probability case
if(prob==0.0)
result[i]=0.0;
else
if(prob==1.0)
result[i]=QPOSINF;
else
result[i]=-mu*MathLog(1.0-prob);
}
return true;
}
//+------------------------------------------------------------------+
//| Exponential distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Exponential distribution with parameter mu |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| mu : Mean |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileExponential(const double &probability[],const double mu,double &result[])
{
return MathQuantileExponential(probability,mu,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Exponential distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Exponential distribution |
//| with parameter mu using simple inversion method. |
//| |
//| Arguments: |
//| mu : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Exponential distribution. |
//| |
//| Reference: |
//| Devroye L. "Non-uniform random variate generation",Springer,1986.|
//+------------------------------------------------------------------+
double MathRandomExponential(const double mu,int &error_code)
{
//--- check mu
if(!MathIsValidNumber(mu))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- mu must be positive
if(mu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- generate random number
double rnd=MathRandomNonZero();
//--- return variate using quantile
return -mu*MathLog(1.0-rnd);
}
//+------------------------------------------------------------------+
//| Random variate from the Exponential distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Exponential distribution |
//| with parameter mu. |
//| |
//| Arguments: |
//| mu : Mean |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomExponential(const double mu,const int data_count,double &result[])
{
//--- check mu
if(!MathIsValidNumber(mu))
return false;
//--- mu must be positive
if(mu<=0.0)
return false;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- generate random number
double rnd=MathRandomNonZero();
result[i]=-mu*MathLog(1.0-rnd);
}
return true;
}
//+------------------------------------------------------------------+
//| Exponential distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of the Exponential |
//| distribution with parameter mu. |
//| |
//| Arguments: |
//| mu : Mean |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsExponential(const double mu,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(mu))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- mu must be positive
if(mu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
mean =mu;
variance=mu*mu;
skewness=2;
kurtosis=6;
//--- successful
return true;
}
//+------------------------------------------------------------------+