635 lines
28 KiB
MQL5
635 lines
28 KiB
MQL5
//+------------------------------------------------------------------+
|
|
//| Lognormal.mqh |
|
|
//| Copyright 2000-2025, MetaQuotes Ltd. |
|
|
//| https://www.mql5.com |
|
|
//+------------------------------------------------------------------+
|
|
#include "Math.mqh"
|
|
#include "Normal.mqh"
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Lognormal distribution with parameters mu and sigma. |
|
|
//| |
|
|
//| f(x,mu,sigma)=[1/(x*sigma*sqrt(2pi)]*exp(-(ln(x)-mu)/(2*sigma^2))|
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityLognormal(const double x,const double mu,const double sigma,const bool log_mode,int &error_code)
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- check x
|
|
if(x<=0.0)
|
|
return TailLog0(true,log_mode);
|
|
//--- check case sigma==0
|
|
if(sigma==0)
|
|
{
|
|
if(MathLog(MathAbs(x))==mu)
|
|
{
|
|
error_code=ERR_RESULT_INFINITE;
|
|
return QPOSINF;
|
|
}
|
|
else
|
|
return TailLog0(true,log_mode);
|
|
}
|
|
//--- prepare argument
|
|
double y=(MathLog(x)-mu)/sigma;
|
|
//--- check argument
|
|
if(!MathIsValidNumber(y))
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- check overflow
|
|
y=MathAbs(y);
|
|
if(y>=2*MathSqrt(DBL_MAX))
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- return lognormal density
|
|
return TailLogValue(M_1_SQRT_2PI*MathExp(-0.5*y*y)/(x*sigma),true,log_mode);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of |
|
|
//| the Lognormal distribution with parameters mu and sigma |
|
|
//| for values in x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| log_mode : Logarithm mode flag,if true it calculates Log values|
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityLognormal(const double &x[],const double mu,const double sigma,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
return false;
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
|
|
//--- check case sigma==0
|
|
if(sigma==0)
|
|
{
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
if(MathLog(MathAbs(x[i]))==mu)
|
|
result[i]=QPOSINF;
|
|
else
|
|
result[i]=TailLog0(true,log_mode);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
if(!MathIsValidNumber(x_arg))
|
|
return false;
|
|
|
|
//--- check x
|
|
if(x_arg<=0.0)
|
|
result[i]=TailLog0(true,log_mode);
|
|
else
|
|
{
|
|
//--- prepare argument
|
|
double y=(MathLog(x_arg)-mu)/sigma;
|
|
//--- check argument
|
|
if(!MathIsValidNumber(y))
|
|
return false;
|
|
//--- check overflow
|
|
y=MathAbs(y);
|
|
if(y>=2*MathSqrt(DBL_MAX))
|
|
return false;
|
|
//--- return lognormal density
|
|
result[i]=TailLogValue(M_1_SQRT_2PI*MathExp(-0.5*y*y)/(x_arg*sigma),true,log_mode);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of |
|
|
//| the Lognormal distribution with parameters mu and sigma |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityLognormal(const double &x[],const double mu,const double sigma,double &result[])
|
|
{
|
|
return MathProbabilityDensityLognormal(x,mu,sigma,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Lognormal distribution with parameters mu and sigma. |
|
|
//| |
|
|
//| f(x,mu,sigma)=[1/(x*sigma*sqrt(2pi)]*exp(-(ln(x)-mu)/(2*sigma^2))|
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityLognormal(const double x,const double mu,const double sigma,int &error_code)
|
|
{
|
|
return MathProbabilityDensityLognormal(x,mu,sigma,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Lognormal distribution with parameters mu and sigma |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Lognormal cumulative distribution function |
|
|
//| with parameters mu and sigma, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionLognormal(const double x,const double mu,const double sigma,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- check x
|
|
if(x<=0.0)
|
|
return TailLog0(tail,log_mode);
|
|
//--- return lognormal cdf using Normal cdf
|
|
return MathCumulativeDistributionNormal(MathLog(x),mu,sigma,tail,log_mode,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Lognormal distribution with parameters mu and sigma |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Lognormal cumulative distribution function |
|
|
//| with parameters mu and sigma, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionLognormal(const double x,const double mu,const double sigma,int &error_code)
|
|
{
|
|
return MathCumulativeDistributionLognormal(x,mu,sigma,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Lognormal distribution with parameters mu and sigma |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionLognormal(const double &x[],const double mu,const double sigma,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
return false;
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
if(!MathIsValidNumber(x_arg))
|
|
return false;
|
|
|
|
//--- check x
|
|
if(x_arg<=0.0)
|
|
result[i]=TailLog0(tail,log_mode);
|
|
else
|
|
//--- return lognormal cdf using Normal cdf
|
|
result[i]=MathCumulativeDistributionNormal(MathLog(x_arg),mu,sigma,tail,log_mode,error_code);
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Lognormal distribution with parameters mu and sigma |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionLognormal(const double &x[],const double mu,const double sigma,double &result[])
|
|
{
|
|
return MathCumulativeDistributionLognormal(x,mu,sigma,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of the Lognormal distribution with parameters mu |
|
|
//| and sigma for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode,if true it calculates for Log values|
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The quantile value of the Lognormal distribution. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileLognormal(const double probability,const double mu,const double sigma,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
if(log_mode==true && probability==QNEGINF)
|
|
{
|
|
error_code=ERR_OK;
|
|
return 0.0;
|
|
}
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(probability) || !MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability,tail,log_mode);
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
//--- special cases exp(a+b-+infinity)
|
|
if(prob==0.0 || prob==1.0)
|
|
{
|
|
if(sigma==0.0)
|
|
{
|
|
error_code=ERR_OK;
|
|
return MathExp(mu);
|
|
}
|
|
else
|
|
if(prob==0.0)
|
|
{
|
|
if(sigma>0)
|
|
{
|
|
error_code=ERR_OK;
|
|
return 0.0;
|
|
}
|
|
else
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_RESULT_INFINITE;
|
|
return QPOSINF;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_OK;
|
|
return 0.0;
|
|
}
|
|
else
|
|
if(sigma>0)
|
|
{
|
|
error_code=ERR_RESULT_INFINITE;
|
|
return QPOSINF;
|
|
}
|
|
}
|
|
}
|
|
//--- return lognormal quantile using Normal distribution
|
|
return MathExp(MathQuantileNormal(prob,mu,sigma,error_code));
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of Lognormal distribution with parameters mu and sigma |
|
|
//| for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The quantile value of the Lognormal distribution. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileLognormal(const double probability,const double mu,const double sigma,int &error_code)
|
|
{
|
|
return MathQuantileLognormal(probability,mu,sigma,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Lognormal distribution with parameters mu and |
|
|
//| sigma for values from the probability[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode,if true it calculates for Log values|
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileLognormal(const double &probability[],const double mu,const double sigma,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
return false;
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(probability);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability[i],tail,log_mode);
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
return false;
|
|
|
|
//--- special cases exp(a+b-+infinity)
|
|
if(prob==0.0 || prob==1.0)
|
|
{
|
|
if(sigma==0.0)
|
|
result[i]=MathExp(mu);
|
|
else
|
|
if(prob==0.0)
|
|
{
|
|
if(sigma>0)
|
|
result[i]=0.0;
|
|
else
|
|
if(sigma<0)
|
|
result[i]=QPOSINF;
|
|
}
|
|
else
|
|
{
|
|
if(sigma<0)
|
|
result[i]=0.0;
|
|
else
|
|
if(sigma>0)
|
|
result[i]=QPOSINF;
|
|
}
|
|
}
|
|
else
|
|
//--- calculate lognormal quantile using Normal distribution
|
|
result[i]=MathExp(MathQuantileNormal(prob,mu,sigma,error_code));
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Lognormal distribution with parameters mu and |
|
|
//| sigma for values from the probability[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileLognormal(const double &probability[],const double mu,const double sigma,double &result[])
|
|
{
|
|
return MathQuantileLognormal(probability,mu,sigma,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Lognormal distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Computes the random variable from the Lognormal distribution |
|
|
//| with parameters mu and sigma. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The random value with Lognormal distribution. |
|
|
//+------------------------------------------------------------------+
|
|
double MathRandomLognormal(const double mu,const double sigma,int &error_code)
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
error_code=ERR_OK;
|
|
//--- generate random number
|
|
double rnd=MathRandomNonZero();
|
|
//---
|
|
rnd=MathQuantileNormal(rnd,mu,sigma,true,false,error_code);
|
|
return MathExp(rnd);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Lognormal distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Generates random variables from the Lognormal distribution |
|
|
//| with parameters mu and sigma. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| data_count : Number of values needed |
|
|
//| result : Output array with random values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathRandomLognormal(const double mu,const double sigma,const int data_count,double &result[])
|
|
{
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
return false;
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
return false;
|
|
//--- prepare output array and calculate random values
|
|
ArrayResize(result,data_count);
|
|
int err_code=0;
|
|
for(int i=0; i<data_count; i++)
|
|
result[i]=MathRandomNonZero();
|
|
//--- return normal random array using quantile
|
|
MathQuantileNormal(result,mu,sigma,result);
|
|
return MathExp(result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Lognormal distribution moments |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates 4 first moments of the Lognormal |
|
|
//| distribution with parameters mu and sigma. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| mu : Log mean |
|
|
//| sigma : Log standard deviation |
|
|
//| mean : Variable for mean value (1st moment) |
|
|
//| variance : Variable for variance value (2nd moment) |
|
|
//| skewness : Variable for skewness value (3rd moment) |
|
|
//| kurtosis : Variable for kurtosis value (4th moment) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if moments calculated successfully, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathMomentsLognormal(const double mu,const double sigma,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
|
|
{
|
|
//--- default values
|
|
mean =QNaN;
|
|
variance=QNaN;
|
|
skewness=QNaN;
|
|
kurtosis=QNaN;
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(mu) || !MathIsValidNumber(sigma))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return false;
|
|
}
|
|
//--- check sigma
|
|
if(sigma<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return false;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- sigma squared
|
|
double sigma_sqr=sigma*sigma;
|
|
double exp_sigma_sqr=MathExp(sigma_sqr);
|
|
//--- calculate moments
|
|
mean =MathExp(mu+sigma_sqr*0.5);
|
|
variance=(exp_sigma_sqr-1.0)*MathExp(2*mu+sigma_sqr);
|
|
skewness=MathSqrt(exp_sigma_sqr-1.0)*(exp_sigma_sqr+2.0);
|
|
kurtosis=3*MathPowInt(exp_sigma_sqr,2)+2*MathPowInt(exp_sigma_sqr,3)+MathPowInt(exp_sigma_sqr,4)-3-3;
|
|
//--- successful
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|