1192 lines
46 KiB
MQL5
1192 lines
46 KiB
MQL5
//+------------------------------------------------------------------+
|
|
//| NoncentralT.mqh |
|
|
//| Copyright 2000-2025, MetaQuotes Ltd. |
|
|
//| https://www.mql5.com |
|
|
//+------------------------------------------------------------------+
|
|
#include "Math.mqh"
|
|
#include "T.mqh"
|
|
#include "Normal.mqh"
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Noncentral T distribution with parameters nu and delta. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityNoncentralT(const double x,const double nu,const double delta,const bool log_mode,int &error_code)
|
|
{
|
|
//--- return T
|
|
if(delta==0.0)
|
|
return MathProbabilityDensityT(x,nu,error_code);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check nu
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//---
|
|
double nu_1=nu+1.0;
|
|
double nu_1_half=nu_1*0.5;
|
|
double log_nu=MathLog(nu);
|
|
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-(delta*delta)*0.5-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
|
|
|
|
double nu_xx=nu+x*x;
|
|
double log_nu_xx=MathLog(nu_xx);
|
|
double factor2=MathExp(-nu_1_half*log_nu_xx);
|
|
//---
|
|
const int max_terms=500;
|
|
double pwr=1.0;
|
|
double pwr_factor=x*delta*M_SQRT2;
|
|
double pwr_nuxx=1.0;
|
|
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
|
|
double pwr_gamma=1.0;
|
|
int j=0;
|
|
double pdf=0.0;
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_nuxx*=pwr_nuxx_factor;
|
|
pwr_gamma/=j;
|
|
pwr*=pwr_factor;
|
|
}
|
|
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
|
|
pdf+=t;
|
|
//--- check precision
|
|
if((t/(pdf+10E-10))<10E-20)
|
|
break;
|
|
j++;
|
|
}
|
|
//--- check convergence
|
|
if(j<max_terms)
|
|
return TailLogValue(factor1*factor2*pdf,true,log_mode);
|
|
else
|
|
{
|
|
error_code=ERR_NON_CONVERGENCE;
|
|
return QNaN;
|
|
}
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability density function |
|
|
//| of the Noncentral T distribution with parameters nu and delta. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Random variable |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The probability density evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathProbabilityDensityNoncentralT(const double x,const double nu,const double delta,int &error_code)
|
|
{
|
|
return MathProbabilityDensityNoncentralT(x,nu,delta,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of |
|
|
//| the Noncentral T distribution with parameters nu and delta |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| log_mode : Logarithm mode flag, if true it returns Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityNoncentralT(const double &x[],const double nu,const double delta,const bool log_mode,double &result[])
|
|
{
|
|
//--- return T
|
|
if(delta==0.0)
|
|
return MathProbabilityDensityT(x,nu,log_mode,result);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
return false;
|
|
//--- check nu
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
//--- common factors
|
|
double nu_1=nu+1.0;
|
|
double nu_1_half=nu_1*0.5;
|
|
double log_nu=MathLog(nu);
|
|
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-(delta*delta)*0.5-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
|
|
double factor_delta=delta*M_SQRT2;
|
|
const int max_terms=500;
|
|
|
|
int error_code=0;
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
if(!MathIsValidNumber(x_arg))
|
|
return false;
|
|
|
|
double nu_xx=nu+x_arg*x_arg;
|
|
double log_nu_xx=MathLog(nu_xx);
|
|
double factor2=MathExp(-nu_1_half*log_nu_xx);
|
|
//---
|
|
double pwr=1.0;
|
|
double pwr_factor=x_arg*factor_delta;
|
|
double pwr_nuxx=1.0;
|
|
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
|
|
double pwr_gamma=1.0;
|
|
int j=0;
|
|
double pdf=0.0;
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_nuxx*=pwr_nuxx_factor;
|
|
pwr_gamma/=j;
|
|
pwr*=pwr_factor;
|
|
}
|
|
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
|
|
pdf+=t;
|
|
//--- check precision
|
|
if((t/(pdf+10E-10))<10E-20)
|
|
break;
|
|
j++;
|
|
}
|
|
//--- check convergence
|
|
if(j<max_terms)
|
|
result[i]=TailLogValue(factor1*factor2*pdf,true,log_mode);
|
|
else
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T probability density function (PDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the probability density function of |
|
|
//| the Noncentral T distribution with parameters nu and delta |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathProbabilityDensityNoncentralT(const double &x[],const double nu,const double delta,double &result[])
|
|
{
|
|
return MathProbabilityDensityNoncentralT(x,nu,delta,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Noncentral T distribution with parameters nu and delta |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Noncentral T cumulative distribution function |
|
|
//| with parameters nu and delta, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
//| The cdf is calculated using Algorithm 7.2 from |
|
|
//| Denise Benton, K. Krishnamoorthy, |
|
|
//| "Computing discrete mixtures of continuous distributions: |
|
|
//| noncentral chisquare, noncentral t and the distribution |
|
|
//| of the square of the sample multiple correlation coeffcient |
|
|
//| Computational Statistics & Data Analysis 43 (2003) 249-267. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionNoncentralT(const double x,const double nu,const double delta,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
//--- return T
|
|
if(delta==0.0)
|
|
return MathCumulativeDistributionT(x,nu,error_code);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check nu (must be positive integer)
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- special case
|
|
if(nu==1.0)
|
|
{
|
|
error_code=ERR_OK;
|
|
return TailLogValue(0.5+MathArctan(x)*M_1_PI,tail,log_mode);
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
|
|
//--- error tolerance
|
|
const double errtol=10E-25;
|
|
//--- maximum number of iterations
|
|
const int max_iterations=1000;
|
|
|
|
double xx,del;
|
|
double ptermf,qtermf,ptermb,qtermb,error;
|
|
//--- if t<0, then the transformation in (3.2) must be used;
|
|
if(x<0.0)
|
|
{
|
|
xx=-x;
|
|
del=-delta;
|
|
}
|
|
else
|
|
{
|
|
xx=x;
|
|
del=delta;
|
|
}
|
|
|
|
int err_code=0;
|
|
//--- compute the normal cdf at (-del):
|
|
double cdf_normal=MathMin(MathCumulativeDistributionNormal(-del,0,1,err_code),1.0);
|
|
|
|
if(xx==0.0)
|
|
return TailLogValue(cdf_normal,tail,log_mode);
|
|
|
|
double y=xx*xx/(nu+xx*xx);
|
|
double dels=0.5*del*del;
|
|
//--- k = integral part of (dels)
|
|
int k=(int)dels;
|
|
double a=k+0.5;
|
|
double c=k+1.0;
|
|
double b=0.5*nu;
|
|
//--- initialization to compute the Pk's:
|
|
double pkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.0));
|
|
double pkb = pkf;
|
|
//--- initialization to compute the Qk's:
|
|
double qkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.5));
|
|
double qkb = qkf;
|
|
//--- compute the incomplete beta function associated with the Pk:
|
|
//--- pbetaf = beta distribution at (y; a; b)
|
|
double pbetaf=MathBetaIncomplete(y,a,b);
|
|
double pbetab=pbetaf;
|
|
//--- compute the incomplete beta function associated with the Qk:
|
|
//--- qbetaf = beta distribution at (y; c; b)
|
|
double qbetaf=MathBetaIncomplete(y,c,b);
|
|
double qbetab=qbetaf;
|
|
//--- initialization to compute the incomplete beta functions associated with the Pi's recursively:
|
|
double pgamf=MathExp(MathGammaLog(a+b-1.0)-MathGammaLog(a)-MathGammaLog(b)+(a-1.0)*MathLog(y)+b*MathLog(1.0-y));
|
|
double pgamb=pgamf*y*(a+b-1.0)/a;
|
|
//--- initialization to compute the incomplete beta functions associated with the Qi's recursively:
|
|
double qgamf=MathExp(MathGammaLog(c+b-1.0)-MathGammaLog(c)-MathGammaLog(b)+(c-1.0)*MathLog(y)+b*MathLog(1.0-y));
|
|
double qgamb=qgamf*y*(c+b-1.0)/c;
|
|
//--- compute the remainder of the Poisson probabilities:
|
|
double rempois=1.0-pkf;
|
|
double delosq2=del/M_SQRT2;
|
|
double sum=pkf*pbetaf+delosq2*qkf*qbetaf;
|
|
double cons=0.5*(1.0+0.5*MathAbs(delta));
|
|
int j=0;
|
|
for(;;)
|
|
{
|
|
j++;
|
|
pgamf*=y*(a+b+j-2.0)/(a+j-1.0);
|
|
pbetaf-=pgamf;
|
|
pkf*=dels/(k+j);
|
|
ptermf=pkf*pbetaf;
|
|
qgamf*=y*(c+b+j-2.0)/(c+j-1.0);
|
|
qbetaf-=qgamf;
|
|
qkf*=dels/(k+j+0.5);
|
|
qtermf=qkf*qbetaf;
|
|
double term=ptermf+delosq2*qtermf;
|
|
sum+=term;
|
|
error=rempois*cons*pbetaf;
|
|
rempois-=pkf;
|
|
//--- do forward and backward computations k times or until convergence:
|
|
if(j<=k)
|
|
{
|
|
pgamb*=(a-j+1.0)/(y*(a+b-j));
|
|
pbetab+=pgamb;
|
|
pkb=(k-j+1.0)*pkb/dels;
|
|
ptermb=pkb*pbetab;
|
|
qgamb*=(c-j+1.0)/(y*(c+b-j));
|
|
qbetab+=qgamb;
|
|
qkb=(k-j+1.5)*qkb/dels;
|
|
qtermb=qkb*qbetab;
|
|
term=ptermb+delosq2*qtermb;
|
|
sum+=term;
|
|
rempois-=pkb;
|
|
if(rempois<=errtol || j>=max_iterations)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if(error<=errtol || j>=max_iterations)
|
|
break;
|
|
}
|
|
}
|
|
//--- check convergence
|
|
if(j<max_iterations)
|
|
{
|
|
double cdf=0.5*sum+cdf_normal;
|
|
//--- if x is negative
|
|
if(x<0)
|
|
cdf=1.0-cdf;
|
|
//--- take into account round-off errors for probability
|
|
return TailLogValue(MathMin(cdf,1.0),tail,log_mode);
|
|
}
|
|
else
|
|
{
|
|
error_code=ERR_NON_CONVERGENCE;
|
|
return QNaN;
|
|
}
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the probability that an observation |
|
|
//| from the Noncentral T distribution with parameters nu and delta |
|
|
//| is less than or equal to x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : The desired quantile |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the Noncentral T cumulative distribution function |
|
|
//| with parameters nu and delta, evaluated at x. |
|
|
//+------------------------------------------------------------------+
|
|
double MathCumulativeDistributionNoncentralT(const double x,const double nu,const double delta,int &error_code)
|
|
{
|
|
return MathCumulativeDistributionNoncentralT(x,nu,delta,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Noncentral T distribution with parameters nu and delta |
|
|
//| for values in x. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
//| The cdf is calculated using Algorithm 7.2 from |
|
|
//| Denise Benton, K. Krishnamoorthy, |
|
|
//| "Computing discrete mixtures of continuous distributions: |
|
|
//| noncentral chisquare, noncentral t and the distribution |
|
|
//| of the square of the sample multiple correlation coeffcient |
|
|
//| Computational Statistics & Data Analysis 43 (2003) 249-267. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionNoncentralT(const double &x[],const double nu,const double delta,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- return T
|
|
if(delta==0.0)
|
|
return MathCumulativeDistributionT(x,nu,tail,log_mode,result);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
return false;
|
|
|
|
//--- check nu (must be positive integer)
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(x);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
ArrayResize(result,data_count);
|
|
//--- special case
|
|
if(nu==1.0)
|
|
{
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
if(!MathIsValidNumber(x_arg))
|
|
return false;
|
|
result[i]=TailLogValue(0.5+MathArctan(x_arg)*M_1_PI,tail,log_mode);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int err_code=0;
|
|
//--- compute the normal cdf at (-del):
|
|
double cdf_normal=MathMin(MathCumulativeDistributionNormal(-delta,0,1,err_code),1.0);
|
|
//--- error tolerance
|
|
const double errtol=10E-25;
|
|
//--- maximum number of iterations
|
|
const int max_iterations=1000;
|
|
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
double x_arg=x[i];
|
|
|
|
if(!MathIsValidNumber(x_arg))
|
|
return false;
|
|
|
|
double xx,del;
|
|
double ptermf,qtermf,ptermb,qtermb,error;
|
|
//--- if t<0, then the transformation in (3.2) must be used;
|
|
if(x_arg<0.0)
|
|
{
|
|
xx=-x_arg;
|
|
del=-delta;
|
|
}
|
|
else
|
|
{
|
|
xx=x_arg;
|
|
del=delta;
|
|
}
|
|
|
|
if(xx==0.0)
|
|
result[i]=TailLogValue(cdf_normal,tail,log_mode);
|
|
else
|
|
{
|
|
double y=xx*xx/(nu+xx*xx);
|
|
double dels=0.5*del*del;
|
|
//--- k = integral part of (dels)
|
|
int k=(int)dels;
|
|
double a=k+0.5;
|
|
double c=k+1.0;
|
|
double b=0.5*nu;
|
|
//--- initialization to compute the Pk's:
|
|
double pkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.0));
|
|
double pkb = pkf;
|
|
//--- initialization to compute the Qk's:
|
|
double qkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.5));
|
|
double qkb = qkf;
|
|
//--- compute the incomplete beta function associated with the Pk:
|
|
//--- pbetaf = beta distribution at (y; a; b)
|
|
double pbetaf=MathBetaIncomplete(y,a,b);
|
|
double pbetab=pbetaf;
|
|
//--- compute the incomplete beta function associated with the Qk:
|
|
//--- qbetaf = beta distribution at (y; c; b)
|
|
double qbetaf=MathBetaIncomplete(y,c,b);
|
|
double qbetab=qbetaf;
|
|
//--- initialization to compute the incomplete beta functions associated with the Pi's recursively:
|
|
double pgamf=MathExp(MathGammaLog(a+b-1.0)-MathGammaLog(a)-MathGammaLog(b)+(a-1.0)*MathLog(y)+b*MathLog(1.0-y));
|
|
double pgamb=pgamf*y*(a+b-1.0)/a;
|
|
//--- initialization to compute the incomplete beta functions associated with the Qi's recursively:
|
|
double qgamf=MathExp(MathGammaLog(c+b-1.0)-MathGammaLog(c)-MathGammaLog(b)+(c-1.0)*MathLog(y)+b*MathLog(1.0-y));
|
|
double qgamb=qgamf*y*(c+b-1.0)/c;
|
|
//--- compute the remainder of the Poisson probabilities:
|
|
double rempois=1.0-pkf;
|
|
double delosq2=del/M_SQRT2;
|
|
double sum=pkf*pbetaf+delosq2*qkf*qbetaf;
|
|
double cons=0.5*(1.0+0.5*MathAbs(delta));
|
|
int j=0;
|
|
for(;;)
|
|
{
|
|
j++;
|
|
pgamf*=y*(a+b+j-2.0)/(a+j-1.0);
|
|
pbetaf-=pgamf;
|
|
pkf*=dels/(k+j);
|
|
ptermf=pkf*pbetaf;
|
|
qgamf*=y*(c+b+j-2.0)/(c+j-1.0);
|
|
qbetaf-=qgamf;
|
|
qkf*=dels/(k+j+0.5);
|
|
qtermf=qkf*qbetaf;
|
|
double term=ptermf+delosq2*qtermf;
|
|
sum+=term;
|
|
error=rempois*cons*pbetaf;
|
|
rempois-=pkf;
|
|
//--- do forward and backward computations k times or until convergence:
|
|
if(j<=k)
|
|
{
|
|
pgamb*=(a-j+1.0)/(y*(a+b-j));
|
|
pbetab+=pgamb;
|
|
pkb=(k-j+1.0)*pkb/dels;
|
|
ptermb=pkb*pbetab;
|
|
qgamb*=(c-j+1.0)/(y*(c+b-j));
|
|
qbetab+=qgamb;
|
|
qkb=(k-j+1.5)*qkb/dels;
|
|
qtermb=qkb*qbetab;
|
|
term=ptermb+delosq2*qtermb;
|
|
sum+=term;
|
|
rempois-=pkb;
|
|
if(rempois<=errtol || j>=max_iterations)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if(error<=errtol || j>=max_iterations)
|
|
break;
|
|
}
|
|
}
|
|
//--- check convergence
|
|
if(j<max_iterations)
|
|
{
|
|
double cdf=0.5*sum+cdf_normal;
|
|
//--- if x is negative
|
|
if(x_arg<0)
|
|
cdf=1.0-cdf;
|
|
//--- take into account round-off errors for probability
|
|
result[i]=TailLogValue(MathMin(cdf,1.0),tail,log_mode);
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T cumulative distribution function (CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the cumulative distribution function of |
|
|
//| the Noncentral T distribution with parameters nu and delta |
|
|
//| for values in x[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| x : Array with random variables |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathCumulativeDistributionNoncentralT(const double &x[],const double nu,const double delta,double &result[])
|
|
{
|
|
return MathCumulativeDistributionNoncentralT(x,nu,delta,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| The Noncentral T distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of Noncentral T distribution with parameters nu and |
|
|
//| delta for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode, if true it calculates Log values |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the inverse cumulative distribution function |
|
|
//| of Noncentral T-distribution with parameters nu and delta. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileNoncentralT(const double probability,const double nu,const double delta,const bool tail,const bool log_mode,int &error_code)
|
|
{
|
|
//--- return T if delta==0
|
|
if(delta==0.0)
|
|
return MathQuantileT(probability,nu,error_code);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check nu
|
|
if(nu!=MathRound(nu) || nu<0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- check delta
|
|
if(delta<0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability,tail,log_mode);
|
|
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
if(prob==0.0 || prob==1.0)
|
|
{
|
|
error_code=ERR_RESULT_INFINITE;
|
|
if(prob==0.0)
|
|
return QNEGINF;
|
|
else
|
|
return QPOSINF;
|
|
}
|
|
//--- coefficients for pdf and cdf
|
|
double sqr_delta_half=delta*delta*0.5;
|
|
double nu_half=nu*0.5;
|
|
double log_sqr_delta_half=MathLog(sqr_delta_half);
|
|
double exp_sqr_delta_half=MathExp(-sqr_delta_half);
|
|
double sqrt_sqr_delta_half=MathSqrt(sqr_delta_half);
|
|
double nu_1=nu+1.0;
|
|
double nu_1_half=nu_1*0.5;
|
|
double log_nu=MathLog(nu);
|
|
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-sqr_delta_half-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
|
|
|
|
//--- probability for -delta
|
|
int err_code=0;
|
|
double p0=MathCumulativeDistributionNormal(-delta,0.0,1.0,err_code);
|
|
//---
|
|
error_code=ERR_OK;
|
|
double precision=10E-20;
|
|
const int max_iterations=150;
|
|
int iterations=0;
|
|
double x=0.5;
|
|
double h=1.0;
|
|
double h_min=precision;
|
|
const int max_terms=500;
|
|
//--- Newton iterations
|
|
while(iterations<max_iterations)
|
|
{
|
|
//--- check convergence
|
|
if((MathAbs(h)>h_min && MathAbs(h)>MathAbs(h_min*x))==false)
|
|
break;
|
|
|
|
//--- calculate pdf
|
|
double x_arg_sqr=x*x;
|
|
double nu_xx=nu+x_arg_sqr;
|
|
double log_nu_xx=MathLog(nu_xx);
|
|
double factor2=MathExp(-nu_1_half*log_nu_xx);
|
|
double pwr=1.0;
|
|
double pwr_factor=x*delta*M_SQRT2;
|
|
double pwr_nuxx=1.0;
|
|
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
|
|
double pwr_gamma=1.0;
|
|
int j=0;
|
|
double pdf=0.0;
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_nuxx*=pwr_nuxx_factor;
|
|
pwr_gamma/=j;
|
|
pwr*=pwr_factor;
|
|
}
|
|
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
|
|
pdf+=t;
|
|
//--- check precision
|
|
if((t/(pdf+10E-10))<10E-20)
|
|
break;
|
|
j++;
|
|
}
|
|
//--- check convergence
|
|
if(j>max_terms)
|
|
return false;
|
|
pdf=factor1*factor2*pdf;
|
|
|
|
//--- calculate cdf
|
|
double t=(x*x)/(nu+x*x);
|
|
double sum1 = 0.0;
|
|
double sum2 = 0.0;
|
|
//---
|
|
double pwr_coef1=1.0;
|
|
double pwr_coef2=1.0;
|
|
double fact=1.0;
|
|
j=0;
|
|
if(x!=0)
|
|
{
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_coef1*=sqrt_sqr_delta_half;
|
|
pwr_coef2*=sqr_delta_half;
|
|
fact/=j;
|
|
}
|
|
double coef=1.0/MathGamma(j*0.5+1.0);
|
|
//--- term1: t between 0 and x
|
|
double t1=pwr_coef1*coef*MathBetaIncomplete(t,(j+1.0)*0.5,nu_half);
|
|
sum1+=t1;
|
|
//--- term2: t between x and -x
|
|
double t2=pwr_coef2*fact*MathBetaIncomplete(t,(j+0.5),nu_half);
|
|
sum2+=t2;
|
|
//--- check precision
|
|
if((MathAbs(t1/(sum1+10E-10))<precision) && (MathAbs(t2/(sum2+10E-10))<precision))
|
|
break;
|
|
j++;
|
|
}
|
|
}
|
|
//--- check convergence
|
|
if(j>max_terms)
|
|
return false;
|
|
|
|
//--- compute probability for positive x
|
|
double cdf=p0+exp_sqr_delta_half*sum1*0.5;
|
|
//--- compute probability for negative x
|
|
if(x<0)
|
|
cdf=cdf-exp_sqr_delta_half*sum2;
|
|
//--- take into account round-off errors for probability
|
|
cdf=MathMin(cdf,1.0);
|
|
|
|
//--- calculate ratio
|
|
h=(cdf-prob)/pdf;
|
|
|
|
double x_new=x-h;
|
|
if(x_new<0.0)
|
|
x_new=x*0.1;
|
|
else
|
|
if(x_new>1.0)
|
|
x_new=1.0-(1.0-x)*0.1;
|
|
|
|
if(MathAbs(x_new-x)<10E-15)
|
|
break;
|
|
|
|
x=x_new;
|
|
iterations++;
|
|
}
|
|
//--- check convergence
|
|
if(iterations<max_iterations)
|
|
return x;
|
|
else
|
|
{
|
|
error_code=ERR_NON_CONVERGENCE;
|
|
return QNaN;
|
|
}
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function returns the inverse cumulative distribution |
|
|
//| function of the Noncentral T distribution with parameters nu |
|
|
//| and delta for the desired probability. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : The desired probability |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The value of the inverse cumulative distribution function |
|
|
//| of Noncentral T-distribution with parameters nu and delta. |
|
|
//+------------------------------------------------------------------+
|
|
double MathQuantileNoncentralT(const double probability,const double nu,const double delta,int &error_code)
|
|
{
|
|
return MathQuantileNoncentralT(probability,nu,delta,true,false,error_code);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Noncentral T distribution with parameters nu |
|
|
//| and delta for values from the probability[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| tail : Flag to calculate lower tail |
|
|
//| log_mode : Logarithm mode,if true it calculates for Log values|
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileNoncentralT(const double &probability[],const double nu,const double delta,const bool tail,const bool log_mode,double &result[])
|
|
{
|
|
//--- return T if delta==0
|
|
if(delta==0.0)
|
|
return MathQuantileT(probability,nu,tail,log_mode,result);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
return false;
|
|
//--- check nu
|
|
if(nu!=MathRound(nu) || nu<0.0)
|
|
return false;
|
|
//--- check delta
|
|
if(delta<0.0)
|
|
return false;
|
|
|
|
int data_count=ArraySize(probability);
|
|
if(data_count==0)
|
|
return false;
|
|
|
|
//--- coefficients for pdf and cdf
|
|
double sqr_delta_half=delta*delta*0.5;
|
|
double nu_half=nu*0.5;
|
|
double log_sqr_delta_half=MathLog(sqr_delta_half);
|
|
double exp_sqr_delta_half=MathExp(-sqr_delta_half);
|
|
double sqrt_sqr_delta_half=MathSqrt(sqr_delta_half);
|
|
double nu_1=nu+1.0;
|
|
double nu_1_half=nu_1*0.5;
|
|
double log_nu=MathLog(nu);
|
|
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-sqr_delta_half-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
|
|
|
|
//--- probability for -delta
|
|
int err_code=0;
|
|
double p0=MathCumulativeDistributionNormal(-delta,0.0,1.0,err_code);
|
|
//---
|
|
double precision=10E-20;
|
|
double h_min=precision;
|
|
const int max_iterations=50;
|
|
const int max_terms=500;
|
|
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
//--- calculate real probability
|
|
double prob=TailLogProbability(probability[i],tail,log_mode);
|
|
|
|
//--- check probability range
|
|
if(prob<0.0 || prob>1.0)
|
|
return false;
|
|
|
|
if(prob==0.0 || prob==1.0)
|
|
{
|
|
if(prob==0.0)
|
|
result[i]=QNEGINF;
|
|
else
|
|
result[i]=QPOSINF;
|
|
}
|
|
else
|
|
{
|
|
double x=0.5;
|
|
double h=1.0;
|
|
int iterations=0;
|
|
//--- Newton iterations
|
|
while(iterations<max_iterations)
|
|
{
|
|
//--- check convergence
|
|
if((MathAbs(h)>h_min && MathAbs(h)>MathAbs(h_min*x))==false)
|
|
break;
|
|
|
|
//--- calculate pdf and cdf
|
|
//double cdf=MathCumulativeDistributionNoncentralT(x,nu,delta,err_code);
|
|
//double pdf=MathProbabilityDensityNoncentralT(x,nu,delta,err_code);
|
|
|
|
//--- calculate pdf
|
|
double x_arg_sqr=x*x;
|
|
double nu_xx=nu+x_arg_sqr;
|
|
double log_nu_xx=MathLog(nu_xx);
|
|
double factor2=MathExp(-nu_1_half*log_nu_xx);
|
|
double pwr=1.0;
|
|
double pwr_factor=x*delta*M_SQRT2;
|
|
double pwr_nuxx=1.0;
|
|
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
|
|
double pwr_gamma=1.0;
|
|
int j=0;
|
|
double pdf=0.0;
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_nuxx*=pwr_nuxx_factor;
|
|
pwr_gamma/=j;
|
|
pwr*=pwr_factor;
|
|
}
|
|
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
|
|
pdf+=t;
|
|
//--- check precision
|
|
if((t/(pdf+10E-10))<10E-20)
|
|
break;
|
|
j++;
|
|
}
|
|
//--- check convergence
|
|
if(j>max_terms)
|
|
return false;
|
|
|
|
pdf=factor1*factor2*pdf;
|
|
|
|
//--- calculate cdf
|
|
double t=(x*x)/(nu+x*x);
|
|
double sum1 = 0.0;
|
|
double sum2 = 0.0;
|
|
//---
|
|
double pwr_coef1=1.0;
|
|
double pwr_coef2=1.0;
|
|
double fact=1.0;
|
|
j=0;
|
|
if(x!=0)
|
|
{
|
|
while(j<max_terms)
|
|
{
|
|
if(j>0)
|
|
{
|
|
pwr_coef1*=sqrt_sqr_delta_half;
|
|
pwr_coef2*=sqr_delta_half;
|
|
fact/=j;
|
|
}
|
|
double coef=1.0/MathGamma(j*0.5+1.0);
|
|
//--- term1: t between 0 and x
|
|
double t1=pwr_coef1*coef*MathBetaIncomplete(t,(j+1.0)*0.5,nu_half);
|
|
sum1+=t1;
|
|
//--- term2: t between x and -x
|
|
double t2=pwr_coef2*fact*MathBetaIncomplete(t,(j+0.5),nu_half);
|
|
sum2+=t2;
|
|
//--- check precision
|
|
if((MathAbs(t1/(sum1+10E-10))<precision) && (MathAbs(t2/(sum2+10E-10))<precision))
|
|
break;
|
|
j++;
|
|
}
|
|
}
|
|
//--- check convergence
|
|
if(j>max_terms)
|
|
return false;
|
|
|
|
//--- compute probability for positive x
|
|
double cdf=p0+exp_sqr_delta_half*sum1*0.5;
|
|
//--- compute probability for negative x
|
|
if(x<0)
|
|
cdf=cdf-exp_sqr_delta_half*sum2;
|
|
//--- take into account round-off errors for probability
|
|
cdf=MathMin(cdf,1.0);
|
|
|
|
//--- calculate ratio
|
|
h=(cdf-prob)/pdf;
|
|
|
|
double x_new=x-h;
|
|
if(x_new<0.0)
|
|
x_new=x*0.1;
|
|
else
|
|
if(x_new>1.0)
|
|
x_new=1.0-(1.0-x)*0.1;
|
|
|
|
if(MathAbs(x_new-x)<10E-15)
|
|
break;
|
|
|
|
x=x_new;
|
|
iterations++;
|
|
}
|
|
//--- check convergence
|
|
if(iterations<max_iterations)
|
|
result[i]=x;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T distribution quantile function (inverse CDF) |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates the inverse cumulative distribution |
|
|
//| function of the Noncentral T distribution with parameters nu |
|
|
//| and delta for values from the probability[] array. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| probability : Array with probabilities |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| result : Array with calculated values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathQuantileNoncentralT(const double &probability[],const double nu,const double delta,double &result[])
|
|
{
|
|
return MathQuantileNoncentralT(probability,nu,delta,true,false,result);
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Noncentral T distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Computes the random variable from the Noncentral T distribution |
|
|
//| with parameters nu and delta. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| The random value with Noncentral T distribution. |
|
|
//+------------------------------------------------------------------+
|
|
double MathRandomNoncentralT(const double nu,const double delta,int &error_code)
|
|
{
|
|
//--- return T if delta==0
|
|
if(delta==0.0)
|
|
return MathRandomT(nu,error_code);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return QNaN;
|
|
}
|
|
//--- check arguments
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
//--- check delta
|
|
if(delta<0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return QNaN;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
int err_code=0;
|
|
//--- generate normal and chisquare random variables
|
|
double rnd_normal=delta+MathRandomNormal(0,1,err_code);
|
|
double rnd_nchi=MathRandomGamma(nu*0.5,2.0,err_code);
|
|
//--- calculate ratio
|
|
double rnd_value=0;
|
|
if(rnd_nchi!=0)
|
|
rnd_value=rnd_normal/MathSqrt(rnd_nchi/nu);
|
|
return rnd_value;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Random variate from the Noncentral T distribution |
|
|
//+------------------------------------------------------------------+
|
|
//| Generates random variables from the Noncentral T distribution |
|
|
//| with parameters nu and delta. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| data_count : Number of values needed |
|
|
//| result : Output array with random values |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if successful, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
bool MathRandomNoncentralT(const double nu,const double delta,const int data_count,double &result[])
|
|
{
|
|
//--- return T if delta==0
|
|
if(delta==0.0)
|
|
return MathRandomT(nu,data_count,result);
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
return false;
|
|
//--- check arguments
|
|
if(nu!=MathRound(nu) || nu<=0.0)
|
|
return false;
|
|
//--- check delta
|
|
if(delta<0)
|
|
return false;
|
|
|
|
int err_code=0;
|
|
//--- prepare output array and calculate random values
|
|
ArrayResize(result,data_count);
|
|
for(int i=0; i<data_count; i++)
|
|
{
|
|
//--- generate normal and chisquare random variables
|
|
double rnd_normal=delta+MathRandomNormal(0,1,err_code);
|
|
double rnd_nchi=MathRandomGamma(nu*0.5,2.0,err_code);
|
|
//--- calculate ratio
|
|
double rnd_value=0;
|
|
if(rnd_nchi!=0)
|
|
{
|
|
rnd_value=rnd_normal/MathSqrt(rnd_nchi/nu);
|
|
result[i]=rnd_value;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|
|
//| Noncentral T distribution moments |
|
|
//+------------------------------------------------------------------+
|
|
//| The function calculates 4 first moments of the Noncentral T |
|
|
//| distribution with parameters nu and delta. |
|
|
//| |
|
|
//| Arguments: |
|
|
//| nu : Degrees of freedom |
|
|
//| delta : Noncentrality parameter |
|
|
//| mean : Variable for mean value (1st moment) |
|
|
//| variance : Variable for variance value (2nd moment) |
|
|
//| skewness : Variable for skewness value (3rd moment) |
|
|
//| kurtosis : Variable for kurtosis value (4th moment) |
|
|
//| error_code : Variable for error code |
|
|
//| |
|
|
//| Return value: |
|
|
//| true if moments calculated successfully, otherwise false. |
|
|
//+------------------------------------------------------------------+
|
|
double MathMomentsNoncentralT(const double nu,const double delta,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
|
|
{
|
|
//--- if delta==0, calc moments for T
|
|
if(delta==0)
|
|
return(MathMomentsT(nu,mean,variance,skewness,kurtosis,error_code));
|
|
//--- default values
|
|
mean =QNaN;
|
|
variance=QNaN;
|
|
skewness=QNaN;
|
|
kurtosis=QNaN;
|
|
//--- check NaN
|
|
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
|
|
{
|
|
error_code=ERR_ARGUMENTS_NAN;
|
|
return false;
|
|
}
|
|
//--- check nu
|
|
if(nu!=MathRound(nu) || nu<0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return false;
|
|
}
|
|
//--- check delta
|
|
if(delta<0.0)
|
|
{
|
|
error_code=ERR_ARGUMENTS_INVALID;
|
|
return false;
|
|
}
|
|
|
|
error_code=ERR_OK;
|
|
//--- calculate moments
|
|
//--- mean
|
|
if(nu>1)
|
|
mean=delta*MathSqrt(nu)*MathGamma((nu-1)*0.5)/(MathSqrt(2)*MathGamma(nu*0.5));
|
|
//--- delta^2
|
|
double delta_sqr=delta*delta;
|
|
//--- 1/((nu-3)*(nu-2))
|
|
double nu32=1/((nu-3)*(nu-2));
|
|
if(nu>2)
|
|
variance=((delta_sqr+1)*nu)/(nu-2)-MathPow(mean,2);
|
|
//--- skewness
|
|
if(nu>3)
|
|
{
|
|
skewness=-2*variance;
|
|
skewness+= nu*(delta_sqr+2*nu-3)*nu32;
|
|
skewness*= mean*MathPow(variance,-1.5);
|
|
}
|
|
//--- kurtosis
|
|
if(nu>4)
|
|
{
|
|
kurtosis=-3*variance;
|
|
kurtosis+= nu*(delta_sqr*(nu+1)+3*(3*nu-5))*nu32;
|
|
kurtosis*= -MathPow(mean,2);
|
|
kurtosis+= MathPow(nu,2)*(MathPow(delta,4)+6*delta_sqr+3)/((nu-4)*(nu-2));
|
|
kurtosis*= MathPow(variance,-2);
|
|
kurtosis-=3;
|
|
}
|
|
//--- successful
|
|
return true;
|
|
}
|
|
//+------------------------------------------------------------------+
|