mql-for-begginers/Include/Math/Stat/NoncentralT.mqh
2025-07-22 18:30:17 +03:00

1192 lines
46 KiB
MQL5

//+------------------------------------------------------------------+
//| NoncentralT.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
#include "T.mqh"
#include "Normal.mqh"
//+------------------------------------------------------------------+
//| Noncentral T probability density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Noncentral T distribution with parameters nu and delta. |
//| |
//| Arguments: |
//| x : Random variable |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNoncentralT(const double x,const double nu,const double delta,const bool log_mode,int &error_code)
{
//--- return T
if(delta==0.0)
return MathProbabilityDensityT(x,nu,error_code);
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu) || !MathIsValidNumber(delta))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check nu
if(nu!=MathRound(nu) || nu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//---
double nu_1=nu+1.0;
double nu_1_half=nu_1*0.5;
double log_nu=MathLog(nu);
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-(delta*delta)*0.5-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
double nu_xx=nu+x*x;
double log_nu_xx=MathLog(nu_xx);
double factor2=MathExp(-nu_1_half*log_nu_xx);
//---
const int max_terms=500;
double pwr=1.0;
double pwr_factor=x*delta*M_SQRT2;
double pwr_nuxx=1.0;
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
double pwr_gamma=1.0;
int j=0;
double pdf=0.0;
while(j<max_terms)
{
if(j>0)
{
pwr_nuxx*=pwr_nuxx_factor;
pwr_gamma/=j;
pwr*=pwr_factor;
}
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
pdf+=t;
//--- check precision
if((t/(pdf+10E-10))<10E-20)
break;
j++;
}
//--- check convergence
if(j<max_terms)
return TailLogValue(factor1*factor2*pdf,true,log_mode);
else
{
error_code=ERR_NON_CONVERGENCE;
return QNaN;
}
}
//+------------------------------------------------------------------+
//| Noncentral T probability density function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability density function |
//| of the Noncentral T distribution with parameters nu and delta. |
//| |
//| Arguments: |
//| x : Random variable |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability density evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityNoncentralT(const double x,const double nu,const double delta,int &error_code)
{
return MathProbabilityDensityNoncentralT(x,nu,delta,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncentral T probability density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Noncentral T distribution with parameters nu and delta |
//| for values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNoncentralT(const double &x[],const double nu,const double delta,const bool log_mode,double &result[])
{
//--- return T
if(delta==0.0)
return MathProbabilityDensityT(x,nu,log_mode,result);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
return false;
//--- check nu
if(nu!=MathRound(nu) || nu<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
//--- common factors
double nu_1=nu+1.0;
double nu_1_half=nu_1*0.5;
double log_nu=MathLog(nu);
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-(delta*delta)*0.5-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
double factor_delta=delta*M_SQRT2;
const int max_terms=500;
int error_code=0;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
double nu_xx=nu+x_arg*x_arg;
double log_nu_xx=MathLog(nu_xx);
double factor2=MathExp(-nu_1_half*log_nu_xx);
//---
double pwr=1.0;
double pwr_factor=x_arg*factor_delta;
double pwr_nuxx=1.0;
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
double pwr_gamma=1.0;
int j=0;
double pdf=0.0;
while(j<max_terms)
{
if(j>0)
{
pwr_nuxx*=pwr_nuxx_factor;
pwr_gamma/=j;
pwr*=pwr_factor;
}
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
pdf+=t;
//--- check precision
if((t/(pdf+10E-10))<10E-20)
break;
j++;
}
//--- check convergence
if(j<max_terms)
result[i]=TailLogValue(factor1*factor2*pdf,true,log_mode);
else
return false;
}
return true;
}
//+------------------------------------------------------------------+
//| Noncentral T probability density function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Noncentral T distribution with parameters nu and delta |
//| for values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityNoncentralT(const double &x[],const double nu,const double delta,double &result[])
{
return MathProbabilityDensityNoncentralT(x,nu,delta,false,result);
}
//+------------------------------------------------------------------+
//| Noncentral T cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Noncentral T distribution with parameters nu and delta |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Noncentral T cumulative distribution function |
//| with parameters nu and delta, evaluated at x. |
//+------------------------------------------------------------------+
//| The cdf is calculated using Algorithm 7.2 from |
//| Denise Benton, K. Krishnamoorthy, |
//| "Computing discrete mixtures of continuous distributions: |
//| noncentral chisquare, noncentral t and the distribution |
//| of the square of the sample multiple correlation coeffcient |
//| Computational Statistics & Data Analysis 43 (2003) 249-267. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNoncentralT(const double x,const double nu,const double delta,const bool tail,const bool log_mode,int &error_code)
{
//--- return T
if(delta==0.0)
return MathCumulativeDistributionT(x,nu,error_code);
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(nu) || !MathIsValidNumber(delta))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check nu (must be positive integer)
if(nu!=MathRound(nu) || nu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- special case
if(nu==1.0)
{
error_code=ERR_OK;
return TailLogValue(0.5+MathArctan(x)*M_1_PI,tail,log_mode);
}
error_code=ERR_OK;
//--- error tolerance
const double errtol=10E-25;
//--- maximum number of iterations
const int max_iterations=1000;
double xx,del;
double ptermf,qtermf,ptermb,qtermb,error;
//--- if t<0, then the transformation in (3.2) must be used;
if(x<0.0)
{
xx=-x;
del=-delta;
}
else
{
xx=x;
del=delta;
}
int err_code=0;
//--- compute the normal cdf at (-del):
double cdf_normal=MathMin(MathCumulativeDistributionNormal(-del,0,1,err_code),1.0);
if(xx==0.0)
return TailLogValue(cdf_normal,tail,log_mode);
double y=xx*xx/(nu+xx*xx);
double dels=0.5*del*del;
//--- k = integral part of (dels)
int k=(int)dels;
double a=k+0.5;
double c=k+1.0;
double b=0.5*nu;
//--- initialization to compute the Pk's:
double pkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.0));
double pkb = pkf;
//--- initialization to compute the Qk's:
double qkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.5));
double qkb = qkf;
//--- compute the incomplete beta function associated with the Pk:
//--- pbetaf = beta distribution at (y; a; b)
double pbetaf=MathBetaIncomplete(y,a,b);
double pbetab=pbetaf;
//--- compute the incomplete beta function associated with the Qk:
//--- qbetaf = beta distribution at (y; c; b)
double qbetaf=MathBetaIncomplete(y,c,b);
double qbetab=qbetaf;
//--- initialization to compute the incomplete beta functions associated with the Pi's recursively:
double pgamf=MathExp(MathGammaLog(a+b-1.0)-MathGammaLog(a)-MathGammaLog(b)+(a-1.0)*MathLog(y)+b*MathLog(1.0-y));
double pgamb=pgamf*y*(a+b-1.0)/a;
//--- initialization to compute the incomplete beta functions associated with the Qi's recursively:
double qgamf=MathExp(MathGammaLog(c+b-1.0)-MathGammaLog(c)-MathGammaLog(b)+(c-1.0)*MathLog(y)+b*MathLog(1.0-y));
double qgamb=qgamf*y*(c+b-1.0)/c;
//--- compute the remainder of the Poisson probabilities:
double rempois=1.0-pkf;
double delosq2=del/M_SQRT2;
double sum=pkf*pbetaf+delosq2*qkf*qbetaf;
double cons=0.5*(1.0+0.5*MathAbs(delta));
int j=0;
for(;;)
{
j++;
pgamf*=y*(a+b+j-2.0)/(a+j-1.0);
pbetaf-=pgamf;
pkf*=dels/(k+j);
ptermf=pkf*pbetaf;
qgamf*=y*(c+b+j-2.0)/(c+j-1.0);
qbetaf-=qgamf;
qkf*=dels/(k+j+0.5);
qtermf=qkf*qbetaf;
double term=ptermf+delosq2*qtermf;
sum+=term;
error=rempois*cons*pbetaf;
rempois-=pkf;
//--- do forward and backward computations k times or until convergence:
if(j<=k)
{
pgamb*=(a-j+1.0)/(y*(a+b-j));
pbetab+=pgamb;
pkb=(k-j+1.0)*pkb/dels;
ptermb=pkb*pbetab;
qgamb*=(c-j+1.0)/(y*(c+b-j));
qbetab+=qgamb;
qkb=(k-j+1.5)*qkb/dels;
qtermb=qkb*qbetab;
term=ptermb+delosq2*qtermb;
sum+=term;
rempois-=pkb;
if(rempois<=errtol || j>=max_iterations)
break;
}
else
{
if(error<=errtol || j>=max_iterations)
break;
}
}
//--- check convergence
if(j<max_iterations)
{
double cdf=0.5*sum+cdf_normal;
//--- if x is negative
if(x<0)
cdf=1.0-cdf;
//--- take into account round-off errors for probability
return TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
else
{
error_code=ERR_NON_CONVERGENCE;
return QNaN;
}
}
//+------------------------------------------------------------------+
//| Noncentral T cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from the Noncentral T distribution with parameters nu and delta |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Noncentral T cumulative distribution function |
//| with parameters nu and delta, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionNoncentralT(const double x,const double nu,const double delta,int &error_code)
{
return MathCumulativeDistributionNoncentralT(x,nu,delta,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncentral T cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Noncentral T distribution with parameters nu and delta |
//| for values in x. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
//| The cdf is calculated using Algorithm 7.2 from |
//| Denise Benton, K. Krishnamoorthy, |
//| "Computing discrete mixtures of continuous distributions: |
//| noncentral chisquare, noncentral t and the distribution |
//| of the square of the sample multiple correlation coeffcient |
//| Computational Statistics & Data Analysis 43 (2003) 249-267. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNoncentralT(const double &x[],const double nu,const double delta,const bool tail,const bool log_mode,double &result[])
{
//--- return T
if(delta==0.0)
return MathCumulativeDistributionT(x,nu,tail,log_mode,result);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
return false;
//--- check nu (must be positive integer)
if(nu!=MathRound(nu) || nu<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
ArrayResize(result,data_count);
//--- special case
if(nu==1.0)
{
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
result[i]=TailLogValue(0.5+MathArctan(x_arg)*M_1_PI,tail,log_mode);
}
return true;
}
int err_code=0;
//--- compute the normal cdf at (-del):
double cdf_normal=MathMin(MathCumulativeDistributionNormal(-delta,0,1,err_code),1.0);
//--- error tolerance
const double errtol=10E-25;
//--- maximum number of iterations
const int max_iterations=1000;
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
double xx,del;
double ptermf,qtermf,ptermb,qtermb,error;
//--- if t<0, then the transformation in (3.2) must be used;
if(x_arg<0.0)
{
xx=-x_arg;
del=-delta;
}
else
{
xx=x_arg;
del=delta;
}
if(xx==0.0)
result[i]=TailLogValue(cdf_normal,tail,log_mode);
else
{
double y=xx*xx/(nu+xx*xx);
double dels=0.5*del*del;
//--- k = integral part of (dels)
int k=(int)dels;
double a=k+0.5;
double c=k+1.0;
double b=0.5*nu;
//--- initialization to compute the Pk's:
double pkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.0));
double pkb = pkf;
//--- initialization to compute the Qk's:
double qkf = MathExp(-dels+k*MathLog(dels)-MathGammaLog(k+1.5));
double qkb = qkf;
//--- compute the incomplete beta function associated with the Pk:
//--- pbetaf = beta distribution at (y; a; b)
double pbetaf=MathBetaIncomplete(y,a,b);
double pbetab=pbetaf;
//--- compute the incomplete beta function associated with the Qk:
//--- qbetaf = beta distribution at (y; c; b)
double qbetaf=MathBetaIncomplete(y,c,b);
double qbetab=qbetaf;
//--- initialization to compute the incomplete beta functions associated with the Pi's recursively:
double pgamf=MathExp(MathGammaLog(a+b-1.0)-MathGammaLog(a)-MathGammaLog(b)+(a-1.0)*MathLog(y)+b*MathLog(1.0-y));
double pgamb=pgamf*y*(a+b-1.0)/a;
//--- initialization to compute the incomplete beta functions associated with the Qi's recursively:
double qgamf=MathExp(MathGammaLog(c+b-1.0)-MathGammaLog(c)-MathGammaLog(b)+(c-1.0)*MathLog(y)+b*MathLog(1.0-y));
double qgamb=qgamf*y*(c+b-1.0)/c;
//--- compute the remainder of the Poisson probabilities:
double rempois=1.0-pkf;
double delosq2=del/M_SQRT2;
double sum=pkf*pbetaf+delosq2*qkf*qbetaf;
double cons=0.5*(1.0+0.5*MathAbs(delta));
int j=0;
for(;;)
{
j++;
pgamf*=y*(a+b+j-2.0)/(a+j-1.0);
pbetaf-=pgamf;
pkf*=dels/(k+j);
ptermf=pkf*pbetaf;
qgamf*=y*(c+b+j-2.0)/(c+j-1.0);
qbetaf-=qgamf;
qkf*=dels/(k+j+0.5);
qtermf=qkf*qbetaf;
double term=ptermf+delosq2*qtermf;
sum+=term;
error=rempois*cons*pbetaf;
rempois-=pkf;
//--- do forward and backward computations k times or until convergence:
if(j<=k)
{
pgamb*=(a-j+1.0)/(y*(a+b-j));
pbetab+=pgamb;
pkb=(k-j+1.0)*pkb/dels;
ptermb=pkb*pbetab;
qgamb*=(c-j+1.0)/(y*(c+b-j));
qbetab+=qgamb;
qkb=(k-j+1.5)*qkb/dels;
qtermb=qkb*qbetab;
term=ptermb+delosq2*qtermb;
sum+=term;
rempois-=pkb;
if(rempois<=errtol || j>=max_iterations)
break;
}
else
{
if(error<=errtol || j>=max_iterations)
break;
}
}
//--- check convergence
if(j<max_iterations)
{
double cdf=0.5*sum+cdf_normal;
//--- if x is negative
if(x_arg<0)
cdf=1.0-cdf;
//--- take into account round-off errors for probability
result[i]=TailLogValue(MathMin(cdf,1.0),tail,log_mode);
}
else
return false;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Noncentral T cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Noncentral T distribution with parameters nu and delta |
//| for values in x[] array. |
//| |
//| Arguments: |
//| x : Array with random variables |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionNoncentralT(const double &x[],const double nu,const double delta,double &result[])
{
return MathCumulativeDistributionNoncentralT(x,nu,delta,true,false,result);
}
//+------------------------------------------------------------------+
//| The Noncentral T distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of Noncentral T distribution with parameters nu and |
//| delta for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of Noncentral T-distribution with parameters nu and delta. |
//+------------------------------------------------------------------+
double MathQuantileNoncentralT(const double probability,const double nu,const double delta,const bool tail,const bool log_mode,int &error_code)
{
//--- return T if delta==0
if(delta==0.0)
return MathQuantileT(probability,nu,error_code);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check nu
if(nu!=MathRound(nu) || nu<0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check delta
if(delta<0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
if(prob==0.0 || prob==1.0)
{
error_code=ERR_RESULT_INFINITE;
if(prob==0.0)
return QNEGINF;
else
return QPOSINF;
}
//--- coefficients for pdf and cdf
double sqr_delta_half=delta*delta*0.5;
double nu_half=nu*0.5;
double log_sqr_delta_half=MathLog(sqr_delta_half);
double exp_sqr_delta_half=MathExp(-sqr_delta_half);
double sqrt_sqr_delta_half=MathSqrt(sqr_delta_half);
double nu_1=nu+1.0;
double nu_1_half=nu_1*0.5;
double log_nu=MathLog(nu);
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-sqr_delta_half-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
//--- probability for -delta
int err_code=0;
double p0=MathCumulativeDistributionNormal(-delta,0.0,1.0,err_code);
//---
error_code=ERR_OK;
double precision=10E-20;
const int max_iterations=150;
int iterations=0;
double x=0.5;
double h=1.0;
double h_min=precision;
const int max_terms=500;
//--- Newton iterations
while(iterations<max_iterations)
{
//--- check convergence
if((MathAbs(h)>h_min && MathAbs(h)>MathAbs(h_min*x))==false)
break;
//--- calculate pdf
double x_arg_sqr=x*x;
double nu_xx=nu+x_arg_sqr;
double log_nu_xx=MathLog(nu_xx);
double factor2=MathExp(-nu_1_half*log_nu_xx);
double pwr=1.0;
double pwr_factor=x*delta*M_SQRT2;
double pwr_nuxx=1.0;
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
double pwr_gamma=1.0;
int j=0;
double pdf=0.0;
while(j<max_terms)
{
if(j>0)
{
pwr_nuxx*=pwr_nuxx_factor;
pwr_gamma/=j;
pwr*=pwr_factor;
}
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
pdf+=t;
//--- check precision
if((t/(pdf+10E-10))<10E-20)
break;
j++;
}
//--- check convergence
if(j>max_terms)
return false;
pdf=factor1*factor2*pdf;
//--- calculate cdf
double t=(x*x)/(nu+x*x);
double sum1 = 0.0;
double sum2 = 0.0;
//---
double pwr_coef1=1.0;
double pwr_coef2=1.0;
double fact=1.0;
j=0;
if(x!=0)
{
while(j<max_terms)
{
if(j>0)
{
pwr_coef1*=sqrt_sqr_delta_half;
pwr_coef2*=sqr_delta_half;
fact/=j;
}
double coef=1.0/MathGamma(j*0.5+1.0);
//--- term1: t between 0 and x
double t1=pwr_coef1*coef*MathBetaIncomplete(t,(j+1.0)*0.5,nu_half);
sum1+=t1;
//--- term2: t between x and -x
double t2=pwr_coef2*fact*MathBetaIncomplete(t,(j+0.5),nu_half);
sum2+=t2;
//--- check precision
if((MathAbs(t1/(sum1+10E-10))<precision) && (MathAbs(t2/(sum2+10E-10))<precision))
break;
j++;
}
}
//--- check convergence
if(j>max_terms)
return false;
//--- compute probability for positive x
double cdf=p0+exp_sqr_delta_half*sum1*0.5;
//--- compute probability for negative x
if(x<0)
cdf=cdf-exp_sqr_delta_half*sum2;
//--- take into account round-off errors for probability
cdf=MathMin(cdf,1.0);
//--- calculate ratio
h=(cdf-prob)/pdf;
double x_new=x-h;
if(x_new<0.0)
x_new=x*0.1;
else
if(x_new>1.0)
x_new=1.0-(1.0-x)*0.1;
if(MathAbs(x_new-x)<10E-15)
break;
x=x_new;
iterations++;
}
//--- check convergence
if(iterations<max_iterations)
return x;
else
{
error_code=ERR_NON_CONVERGENCE;
return QNaN;
}
}
//+------------------------------------------------------------------+
//| Noncentral T distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function returns the inverse cumulative distribution |
//| function of the Noncentral T distribution with parameters nu |
//| and delta for the desired probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of Noncentral T-distribution with parameters nu and delta. |
//+------------------------------------------------------------------+
double MathQuantileNoncentralT(const double probability,const double nu,const double delta,int &error_code)
{
return MathQuantileNoncentralT(probability,nu,delta,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Noncentral T distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Noncentral T distribution with parameters nu |
//| and delta for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates for Log values|
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNoncentralT(const double &probability[],const double nu,const double delta,const bool tail,const bool log_mode,double &result[])
{
//--- return T if delta==0
if(delta==0.0)
return MathQuantileT(probability,nu,tail,log_mode,result);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
return false;
//--- check nu
if(nu!=MathRound(nu) || nu<0.0)
return false;
//--- check delta
if(delta<0.0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
//--- coefficients for pdf and cdf
double sqr_delta_half=delta*delta*0.5;
double nu_half=nu*0.5;
double log_sqr_delta_half=MathLog(sqr_delta_half);
double exp_sqr_delta_half=MathExp(-sqr_delta_half);
double sqrt_sqr_delta_half=MathSqrt(sqr_delta_half);
double nu_1=nu+1.0;
double nu_1_half=nu_1*0.5;
double log_nu=MathLog(nu);
double factor1=MathExp(-0.5*(MathLog(M_PI)+log_nu)-sqr_delta_half-MathGammaLog(nu*0.5)+nu_1_half*log_nu);
//--- probability for -delta
int err_code=0;
double p0=MathCumulativeDistributionNormal(-delta,0.0,1.0,err_code);
//---
double precision=10E-20;
double h_min=precision;
const int max_iterations=50;
const int max_terms=500;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
if(prob==0.0 || prob==1.0)
{
if(prob==0.0)
result[i]=QNEGINF;
else
result[i]=QPOSINF;
}
else
{
double x=0.5;
double h=1.0;
int iterations=0;
//--- Newton iterations
while(iterations<max_iterations)
{
//--- check convergence
if((MathAbs(h)>h_min && MathAbs(h)>MathAbs(h_min*x))==false)
break;
//--- calculate pdf and cdf
//double cdf=MathCumulativeDistributionNoncentralT(x,nu,delta,err_code);
//double pdf=MathProbabilityDensityNoncentralT(x,nu,delta,err_code);
//--- calculate pdf
double x_arg_sqr=x*x;
double nu_xx=nu+x_arg_sqr;
double log_nu_xx=MathLog(nu_xx);
double factor2=MathExp(-nu_1_half*log_nu_xx);
double pwr=1.0;
double pwr_factor=x*delta*M_SQRT2;
double pwr_nuxx=1.0;
double pwr_nuxx_factor=1.0/MathSqrt(nu_xx);
double pwr_gamma=1.0;
int j=0;
double pdf=0.0;
while(j<max_terms)
{
if(j>0)
{
pwr_nuxx*=pwr_nuxx_factor;
pwr_gamma/=j;
pwr*=pwr_factor;
}
double t=pwr*pwr_gamma*pwr_nuxx*MathGamma((nu_1+j)*0.5);
pdf+=t;
//--- check precision
if((t/(pdf+10E-10))<10E-20)
break;
j++;
}
//--- check convergence
if(j>max_terms)
return false;
pdf=factor1*factor2*pdf;
//--- calculate cdf
double t=(x*x)/(nu+x*x);
double sum1 = 0.0;
double sum2 = 0.0;
//---
double pwr_coef1=1.0;
double pwr_coef2=1.0;
double fact=1.0;
j=0;
if(x!=0)
{
while(j<max_terms)
{
if(j>0)
{
pwr_coef1*=sqrt_sqr_delta_half;
pwr_coef2*=sqr_delta_half;
fact/=j;
}
double coef=1.0/MathGamma(j*0.5+1.0);
//--- term1: t between 0 and x
double t1=pwr_coef1*coef*MathBetaIncomplete(t,(j+1.0)*0.5,nu_half);
sum1+=t1;
//--- term2: t between x and -x
double t2=pwr_coef2*fact*MathBetaIncomplete(t,(j+0.5),nu_half);
sum2+=t2;
//--- check precision
if((MathAbs(t1/(sum1+10E-10))<precision) && (MathAbs(t2/(sum2+10E-10))<precision))
break;
j++;
}
}
//--- check convergence
if(j>max_terms)
return false;
//--- compute probability for positive x
double cdf=p0+exp_sqr_delta_half*sum1*0.5;
//--- compute probability for negative x
if(x<0)
cdf=cdf-exp_sqr_delta_half*sum2;
//--- take into account round-off errors for probability
cdf=MathMin(cdf,1.0);
//--- calculate ratio
h=(cdf-prob)/pdf;
double x_new=x-h;
if(x_new<0.0)
x_new=x*0.1;
else
if(x_new>1.0)
x_new=1.0-(1.0-x)*0.1;
if(MathAbs(x_new-x)<10E-15)
break;
x=x_new;
iterations++;
}
//--- check convergence
if(iterations<max_iterations)
result[i]=x;
else
return false;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Noncentral T distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Noncentral T distribution with parameters nu |
//| and delta for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantileNoncentralT(const double &probability[],const double nu,const double delta,double &result[])
{
return MathQuantileNoncentralT(probability,nu,delta,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Noncentral T distribution |
//+------------------------------------------------------------------+
//| Computes the random variable from the Noncentral T distribution |
//| with parameters nu and delta. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Noncentral T distribution. |
//+------------------------------------------------------------------+
double MathRandomNoncentralT(const double nu,const double delta,int &error_code)
{
//--- return T if delta==0
if(delta==0.0)
return MathRandomT(nu,error_code);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- check arguments
if(nu!=MathRound(nu) || nu<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check delta
if(delta<0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
int err_code=0;
//--- generate normal and chisquare random variables
double rnd_normal=delta+MathRandomNormal(0,1,err_code);
double rnd_nchi=MathRandomGamma(nu*0.5,2.0,err_code);
//--- calculate ratio
double rnd_value=0;
if(rnd_nchi!=0)
rnd_value=rnd_normal/MathSqrt(rnd_nchi/nu);
return rnd_value;
}
//+------------------------------------------------------------------+
//| Random variate from the Noncentral T distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Noncentral T distribution |
//| with parameters nu and delta. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomNoncentralT(const double nu,const double delta,const int data_count,double &result[])
{
//--- return T if delta==0
if(delta==0.0)
return MathRandomT(nu,data_count,result);
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
return false;
//--- check arguments
if(nu!=MathRound(nu) || nu<=0.0)
return false;
//--- check delta
if(delta<0)
return false;
int err_code=0;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
//--- generate normal and chisquare random variables
double rnd_normal=delta+MathRandomNormal(0,1,err_code);
double rnd_nchi=MathRandomGamma(nu*0.5,2.0,err_code);
//--- calculate ratio
double rnd_value=0;
if(rnd_nchi!=0)
{
rnd_value=rnd_normal/MathSqrt(rnd_nchi/nu);
result[i]=rnd_value;
}
else
return false;
}
return true;
}
//+------------------------------------------------------------------+
//| Noncentral T distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of the Noncentral T |
//| distribution with parameters nu and delta. |
//| |
//| Arguments: |
//| nu : Degrees of freedom |
//| delta : Noncentrality parameter |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
double MathMomentsNoncentralT(const double nu,const double delta,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- if delta==0, calc moments for T
if(delta==0)
return(MathMomentsT(nu,mean,variance,skewness,kurtosis,error_code));
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(nu) || !MathIsValidNumber(delta))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- check nu
if(nu!=MathRound(nu) || nu<0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
//--- check delta
if(delta<0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
//--- mean
if(nu>1)
mean=delta*MathSqrt(nu)*MathGamma((nu-1)*0.5)/(MathSqrt(2)*MathGamma(nu*0.5));
//--- delta^2
double delta_sqr=delta*delta;
//--- 1/((nu-3)*(nu-2))
double nu32=1/((nu-3)*(nu-2));
if(nu>2)
variance=((delta_sqr+1)*nu)/(nu-2)-MathPow(mean,2);
//--- skewness
if(nu>3)
{
skewness=-2*variance;
skewness+= nu*(delta_sqr+2*nu-3)*nu32;
skewness*= mean*MathPow(variance,-1.5);
}
//--- kurtosis
if(nu>4)
{
kurtosis=-3*variance;
kurtosis+= nu*(delta_sqr*(nu+1)+3*(3*nu-5))*nu32;
kurtosis*= -MathPow(mean,2);
kurtosis+= MathPow(nu,2)*(MathPow(delta,4)+6*delta_sqr+3)/((nu-4)*(nu-2));
kurtosis*= MathPow(variance,-2);
kurtosis-=3;
}
//--- successful
return true;
}
//+------------------------------------------------------------------+