mql-for-begginers/Include/Math/Stat/Poisson.mqh
2025-07-22 18:30:17 +03:00

791 lines
31 KiB
MQL5

//+------------------------------------------------------------------+
//| Poisson.mqh |
//| Copyright 2000-2025, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
#include "Math.mqh"
#include "Gamma.mqh"
//+------------------------------------------------------------------+
//| Poisson probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Poisson distribution with parameter lambda. |
//| |
//| Arguments: |
//| x : Random variable |
//| lambda : Mean |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityPoisson(const double x,const double lambda,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- lambda must be positive, x must be integer
if(lambda<=0.0 || x!=MathRound(x))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check x
if(x<0.0)
return TailLog0(true,log_mode);
//--- calculate log pdf using LogGamma
double log_pdf=-lambda+x*MathLog(lambda)-MathGammaLog(x+1.0);
if(log_mode)
return log_pdf;
//--- return density
return MathExp(log_pdf);
}
//+------------------------------------------------------------------+
//| Poisson probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function returns the probability mass function |
//| of the Poisson distribution with parameter lambda. |
//| |
//| Arguments: |
//| x : Random variable |
//| lambda : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The probability mass evaluated at x. |
//+------------------------------------------------------------------+
double MathProbabilityDensityPoisson(const double x,const double lambda,int &error_code)
{
return MathProbabilityDensityPoisson(x,lambda,false,error_code);
}
//+------------------------------------------------------------------+
//| Poisson probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Poisson distribution with parameter lambda for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| lambda : Mean |
//| log_mode : Logarithm mode flag, if true it returns Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityPoisson(const double &x[],const double lambda,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(lambda))
return false;
//--- lambda must be positive
if(lambda<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(!MathIsValidNumber(x_arg))
return false;
if(x_arg!=MathRound(x_arg))
return false;
//--- check x
if(x_arg<0.0)
result[i]=TailLog0(true,log_mode);
else
{
//--- calculate log pdf using LogGamma
double log_pdf=-lambda+x_arg*MathLog(lambda)-MathGammaLog(x_arg+1.0);
if(log_mode)
result[i]=log_pdf;
else
result[i]=MathExp(log_pdf);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Poisson probability mass function (PDF) |
//+------------------------------------------------------------------+
//| The function calculates the probability density function of |
//| the Poisson distribution with parameter lambda for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| lambda : Mean |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathProbabilityDensityPoisson(const double &x[],const double lambda,double &result[])
{
return MathProbabilityDensityPoisson(x,lambda,false,result);
}
//+------------------------------------------------------------------+
//| Poisson cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from Poisson distribution with parameter lambda |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| lambda : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Poisson cumulative distribution function with |
//| parameter lambda, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionPoisson(const double x,const double lambda,const bool tail,const bool log_mode,int &error_code)
{
//--- check NaN
if(!MathIsValidNumber(x) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- lambda must be positive, x must be integer
if(lambda<=0.0 || x!=MathRound(x))
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
//--- check x
if(x<0.0)
return TailLog0(tail,log_mode);
int err_code=0;
int t=(int)MathFloor(x+10e-10);
double cdf=MathCumulativeDistributionGamma(lambda,t+1,1,false,false,err_code);
return TailLogValue(cdf,tail,log_mode);
}
//+------------------------------------------------------------------+
//| Poisson cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function returns the probability that an observation |
//| from Poisson distribution with parameter lambda |
//| is less than or equal to x. |
//| |
//| Arguments: |
//| x : The desired quantile |
//| lambda : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the Poisson cumulative distribution function with |
//| parameter lambda, evaluated at x. |
//+------------------------------------------------------------------+
double MathCumulativeDistributionPoisson(const double x,const double lambda,int &error_code)
{
return MathCumulativeDistributionPoisson(x,lambda,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Poisson cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Poisson distribution with parameter lambda for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| lambda : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionPoisson(const double &x[],const double lambda,const bool tail,const bool log_mode,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(lambda))
return false;
//--- lambda must be positive
if(lambda<=0.0)
return false;
int data_count=ArraySize(x);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
double coef_lambda=MathExp(-lambda);
for(int i=0; i<data_count; i++)
{
double x_arg=x[i];
if(x_arg!=MathRound(x_arg))
return false;
if(x_arg<0.0)
result[i]=TailLog0(tail,log_mode);
else
{
int err_code=0;
int t=(int)MathFloor(x_arg+10e-10);
double cdf=MathCumulativeDistributionGamma(lambda,t+1,1,false,false,err_code);
result[i]=TailLogValue(cdf,tail,log_mode);
}
}
return true;
}
//+------------------------------------------------------------------+
//| Poisson cumulative distribution function (CDF) |
//+------------------------------------------------------------------+
//| The function calculates the cumulative distribution function of |
//| the Poisson distribution with parameter lambda for values in x[].|
//| |
//| Arguments: |
//| x : Array with random variables |
//| lambda : Mean |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathCumulativeDistributionPoisson(const double &x[],const double lambda,double &result[])
{
return MathCumulativeDistributionPoisson(x,lambda,true,false,result);
}
//+------------------------------------------------------------------+
//| Poisson distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| Computes the inverse cumulative distribution function of the |
//| Poisson distribution with parameter lambda for the desired |
//| probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| lambda : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode,if true it calculates for Log values|
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of the Poisson distribution with parameter lambda. |
//+------------------------------------------------------------------+
double MathQuantilePoisson(const double probability,const double lambda,const bool tail,const bool log_mode,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(probability) || !MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- lambda must be positive
if(lambda<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- calculate real probability
double prob=TailLogProbability(probability,tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
//--- check
if(prob==1.0)
{
error_code=ERR_RESULT_INFINITE;
return QPOSINF;
}
error_code=ERR_OK;
if(prob==0.0)
return 0.0;
prob*=1-1000*DBL_EPSILON;
int err_code=0;
int j=0;
const int max_terms=500;
double coef_lambda=MathExp(-lambda);
double pwr_lambda=1.0;
double inverse_fact=1.0;
double sum=0;
//--- direct calculation of the quantile
while(sum<prob && j<max_terms)
{
if(j>0)
{
pwr_lambda*=lambda;
inverse_fact/=j;
}
sum+=coef_lambda*pwr_lambda*inverse_fact;
j++;
}
//--- check convergence
if(j<max_terms)
{
if(j==0)
return 0;
else
return j-1;
}
else
{
error_code=ERR_RESULT_INFINITE;
return QPOSINF;
}
}
//+------------------------------------------------------------------+
//| Poisson distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| Computes the inverse cumulative distribution function of the |
//| Poisson distribution with parameter lambda for the desired |
//| probability. |
//| |
//| Arguments: |
//| probability : The desired probability |
//| lambda : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The value of the inverse cumulative distribution function |
//| of Poisson distribution with parameter lambda. |
//+------------------------------------------------------------------+
double MathQuantilePoisson(const double probability,const double lambda,int &error_code)
{
return MathQuantilePoisson(probability,lambda,true,false,error_code);
}
//+------------------------------------------------------------------+
//| Poisson distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Poisson distribution with parameter lambda |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| lambda : Mean |
//| tail : Flag to calculate lower tail |
//| log_mode : Logarithm mode, if true it calculates Log values |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantilePoisson(const double &probability[],const double lambda,const bool tail,const bool log_mode,double &result[])
{
//--- NaN
if(!MathIsValidNumber(lambda))
return false;
//--- lambda must be positive
if(lambda<=0.0)
return false;
int data_count=ArraySize(probability);
if(data_count==0)
return false;
int error_code=0;
ArrayResize(result,data_count);
double coef_lambda=MathExp(-lambda);
for(int i=0; i<data_count; i++)
{
//--- calculate real probability
double prob=TailLogProbability(probability[i],tail,log_mode);
//--- check probability range
if(prob<0.0 || prob>1.0)
return false;
else
if(prob==1.0)
result[i]=QPOSINF;
if(prob==0.0)
result[i]=0;
else
{
prob*=1-1000*DBL_EPSILON;
int err_code=0;
int j=0;
double sum=0.0;
const int max_terms=500;
double pwr_lambda=1.0;
double inverse_fact=1.0;
//--- direct calculation
while(sum<prob && j<max_terms)
{
if(j>0)
{
pwr_lambda*=lambda;
inverse_fact/=j;
}
sum+=coef_lambda*pwr_lambda*inverse_fact;
j++;
}
//--- check convergence
if(j<max_terms)
{
if(j==0)
result[i]=0;
else
result[i]=j-1;
}
else
return false;
}
}
return true;
}
//+------------------------------------------------------------------+
//| Poisson distribution quantile function (inverse CDF) |
//+------------------------------------------------------------------+
//| The function calculates the inverse cumulative distribution |
//| function of the Poisson distribution with parameter lambda |
//| for values from the probability[] array. |
//| |
//| Arguments: |
//| probability : Array with probabilities |
//| lambda : Mean |
//| result : Array with calculated values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathQuantilePoisson(const double &probability[],const double lambda,double &result[])
{
return MathQuantilePoisson(probability,lambda,true,false,result);
}
//+------------------------------------------------------------------+
//| Random variate from the Poisson distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Poisson distribution |
//| with parameter lambda. |
//| |
//| Arguments |
//| lambda : Mean |
//| |
//| Return value: |
//| The random value with Poisson distribution. |
//+------------------------------------------------------------------+
//| Original FORTRAN77 version by Barry Brown, James Lovato. |
//| C version by John Burkardt. |
//| |
//| Reference: |
//| Joachim Ahrens, Ulrich Dieter, "Computer Generation of Poisson |
//| "Deviates From Modified Normal Distributions", |
//| ACM Transactions on Mathematical Software, |
//| Volume 8, Number 2, June 1982, pages 163-179. |
//+------------------------------------------------------------------+
double MathRandomPoisson(const double lambda)
{
const double a0 = -0.5;
const double a1 = 0.3333333;
const double a2 = -0.2500068;
const double a3 = 0.2000118;
const double a4 = -0.1661269;
const double a5 = 0.1421878;
const double a6 = -0.1384794;
const double a7 = 0.1250060;
int kflag;
double fk=0,difmuk=0;
double e=0,fx,fy,g,p0,px,py,p,q,s,t,u=0,v,x,xx;
int value=0;
//--- start new table and calculate P0
if(lambda<10.0)
{
int m=MathMax(1,(int)(lambda));
p = MathExp(-lambda);
q = p;
p0= p;
//--- uniform sample for inversion method
for(;;)
{
u=MathRandomNonZero();
value=0;
if(u<=p0)
return value;
//--- creation of new Poisson probabilities
for(int k=1; k<=35; k++)
{
p=p*lambda/double(k);
q=q+p;
if(u<=q)
{
value=k;
return value;
}
}
}
}
else
{
s=MathSqrt(lambda);
double d=6.0*lambda*lambda;
int l=(int)(lambda-1.1484);
//--- generate normal deviate
double f,x1,x2,r2;
do
{
x1=2.0*MathRandomNonZero()-1.0;
x2=2.0*MathRandomNonZero()-1.0;
r2=x1*x1+x2*x2;
}
while(r2>=1.0 || r2==0.0);
//--- Box-Muller transform
f=MathSqrt(-2.0*MathLog(r2)/r2);
double snorm=f*x2;
//--- normal sample
g=lambda+s*snorm;
if(0.0<=g)
{
value=(int)(g);
//--- immediate acceptance if large enough
if(l<=value)
return value;
//--- squeeze acceptance
fk=(double)(value);
difmuk=lambda-fk;
u=MathRandomNonZero();
//---
if(difmuk*difmuk*difmuk<=d*u)
return value;
}
//--- preparation for steps P and Q
double omega=0.3989423/s;
double b1 = 0.04166667/lambda;
double b2 = 0.3*b1*b1;
double c3 = 0.1428571*b1*b2;
double c2 = b2 - 15.0*c3;
double c1 = b1 - 6.0*b2 + 45.0*c3;
double c0 = 1.0 - b1 + 3.0*b2 - 15.0*c3;
double c=0.1069/lambda;
double del=0;
if(0.0<=g)
{
kflag=0;
if(value<10)
{
px = -lambda;
py = MathPow(lambda,value)/MathFactorial(value);
}
else
{
del = 0.8333333E-01/fk;
del = del - 4.8*del*del*del;
v=difmuk/fk;
if(0.25<MathAbs(v))
{
px=fk*MathLog(1.0+v)-difmuk-del;
}
else
{
px=fk*v*v*(((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v+a0)-del;
}
py=0.3989423/MathSqrt(fk);
}
x=(0.5-difmuk)/s;
xx = x * x;
fx = -0.5 * xx;
fy = omega*(((c3*xx+c2)*xx+c1)*xx+c0);
if(kflag<=0)
{
if(fy-u*fy<=py*MathExp(px-fx))
return value;
}
else
{
if(c*MathAbs(u)<=py*MathExp(px+e)-fy*MathExp(fx+e))
return value;
}
}
//--- exponential sample
for(;;)
{
double rnd=MathRandomNonZero();
e=-MathLog(1.0-rnd);
u=2.0*MathRandomNonZero()-1.0;
if(u<0.0)
t=1.8-MathAbs(e);
else
t=1.8+MathAbs(e);
if(t<=-0.6744)
continue;
value=(int)(lambda+s*t);
fk=(double)(value);
difmuk=lambda-fk;
kflag=1;
//--- calculation of PX, PY, FX, FY
if(value<10)
{
px = -lambda;
py = MathPow(lambda,value)/MathFactorial(value);
}
else
{
del = 0.8333333E-01/fk;
del = del - 4.8*del*del*del;
v=difmuk/fk;
if(0.25<MathAbs(v))
px=fk*MathLog(1.0+v)-difmuk-del;
else
px=fk*v*v*(((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v+a0)-del;
py=0.3989423/MathSqrt(fk);
}
x=(0.5-difmuk)/s;
xx = x*x;
fx = -0.5*xx;
fy = omega*(((c3*xx+c2)*xx+c1)*xx+c0);
if(kflag<=0)
{
if(fy-u*fy<=py*MathExp(px-fx))
return value;
}
else
{
if(c*MathAbs(u)<=py*MathExp(px+e)-fy*MathExp(fx+e))
return value;
}
}
}
return value;
}
//+------------------------------------------------------------------+
//| Random variate from the Poisson distribution |
//+------------------------------------------------------------------+
//| Compute the random variable from the Poisson distribution |
//| with parameter lambda. |
//| |
//| Arguments |
//| lambda : Mean |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| The random value with Poisson distribution. |
//+------------------------------------------------------------------+
double MathRandomPoisson(const double lambda,int &error_code)
{
//--- check parameters
if(!MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return QNaN;
}
//--- lambda must be positive
if(lambda<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return QNaN;
}
error_code=ERR_OK;
return MathRandomPoisson(lambda);
}
//+------------------------------------------------------------------+
//| Random variate from the Poisson distribution |
//+------------------------------------------------------------------+
//| Generates random variables from the Poisson distribution |
//| with parameter lambda. |
//| |
//| Arguments: |
//| lambda : Mean |
//| data_count : Number of values needed |
//| result : Output array with random values |
//| |
//| Return value: |
//| true if successful, otherwise false. |
//+------------------------------------------------------------------+
bool MathRandomPoisson(const double lambda,const int data_count,double &result[])
{
//--- check NaN
if(!MathIsValidNumber(lambda))
return false;
//--- lambda must be positive
if(lambda<=0.0)
return false;
//--- prepare output array and calculate random values
ArrayResize(result,data_count);
for(int i=0; i<data_count; i++)
{
result[i]=MathRandomPoisson(lambda);
}
return true;
}
//+------------------------------------------------------------------+
//| Poisson distribution moments |
//+------------------------------------------------------------------+
//| The function calculates 4 first moments of the Poisson |
//| distribution with parameter lambda. |
//| |
//| Arguments: |
//| lambda : Mean |
//| mean : Variable for mean value (1st moment) |
//| variance : Variable for variance value (2nd moment) |
//| skewness : Variable for skewness value (3rd moment) |
//| kurtosis : Variable for kurtosis value (4th moment) |
//| error_code : Variable for error code |
//| |
//| Return value: |
//| true if moments calculated successfully, otherwise false. |
//+------------------------------------------------------------------+
bool MathMomentsPoisson(const double lambda,double &mean,double &variance,double &skewness,double &kurtosis,int &error_code)
{
//--- default values
mean =QNaN;
variance=QNaN;
skewness=QNaN;
kurtosis=QNaN;
//--- check NaN
if(!MathIsValidNumber(lambda))
{
error_code=ERR_ARGUMENTS_NAN;
return false;
}
//--- lambda must be positive
if(lambda<=0.0)
{
error_code=ERR_ARGUMENTS_INVALID;
return false;
}
error_code=ERR_OK;
//--- calculate moments
mean =lambda;
variance=lambda;
skewness=MathPow(lambda,-0.5);
kurtosis=1.0/lambda;
//--- successful
return true;
}
//+------------------------------------------------------------------+