MQL5Book/Scripts/p3/Matrix.mq5

253 lines
6.8 KiB
MQL5
Raw Permalink Normal View History

2025-05-30 16:09:41 +02:00
//+------------------------------------------------------------------+
//| Matrix.mq5 |
//| Copyright 2021, MetaQuotes Ltd. |
//| https://www.mql5.com |
//+------------------------------------------------------------------+
//+------------------------------------------------------------------+
//| Matrix class with operator overloads |
//+------------------------------------------------------------------+
class Matrix
{
protected:
double m[];
int rows;
int columns;
// check matrix compatibility for summation
bool isCompatible(const Matrix &other)
{
const bool check = rows == other.rows && columns == other.columns;
if(!check) Print("Check failed: matrices must be of the same sizes");
return check;
}
// check matrix compatibility for multiplication
bool isMCompatible(const Matrix &other)
{
const bool check = columns == other.rows;
if(!check) Print("Check failed: this.columns should be equal to other.rows");
return check;
}
void assign(const int r, const int c, const double v)
{
m[r * columns + c] = v;
}
public:
Matrix(const Matrix &other) : rows(other.rows), columns(other.columns)
{
ArrayCopy(m, other.m);
}
Matrix(const int r, const int c) : rows(r), columns(c)
{
ArrayResize(m, rows * columns);
ArrayInitialize(m, 0);
}
class MatrixRow
{
protected:
const Matrix *owner;
const int row;
public:
class MatrixElement
{
protected:
const MatrixRow *row;
const int column;
public:
MatrixElement(const MatrixRow &mr, const int c) : row(&mr), column(c) { }
MatrixElement(const MatrixElement &other) : row(other.row), column(other.column) { }
// return value of this element as double
double operator~() const
{
return row.owner.m[row.row * row.owner.columns + column];
}
// assign double value to this element
double operator=(const double v)
{
row.owner.m[row.row * row.owner.columns + column] = v;
return v;
}
};
MatrixRow(const Matrix &m, const int r) : owner(&m), row(r) { }
MatrixRow(const MatrixRow &other) : owner(other.owner), row(other.row) { }
// access matrix element as object to allow subsequent edition/assignment
// note the type of index is int
MatrixElement operator[](int c)
{
return MatrixElement(this, c);
}
// access matrix element as double value for immediate reading
// note the type of index is uint
double operator[](uint c)
{
return owner.m[row * owner.columns + c];
}
};
Matrix *operator=(const double &a[])
{
if(ArraySize(a) == ArraySize(m))
{
ArrayCopy(m, a);
}
return &this;
}
Matrix *operator=(const Matrix &other) // optional, required for builds pre-2715
{
ArrayCopy(m, other.m);
ArrayResize(m, ArraySize(other.m));
rows = other.rows;
columns = other.columns;
return &this;
}
MatrixRow operator[](int r)
{
return MatrixRow(this, r);
}
Matrix *operator+=(const Matrix &other)
{
if(!isCompatible(other)) return &this;
for(int i = 0; i < rows * columns; ++i)
{
m[i] += other.m[i];
}
return &this;
}
Matrix operator+(const Matrix &other) const
{
Matrix temp(this);
return temp += other;
}
Matrix operator-(const Matrix &other) const
{
Matrix temp(this);
return temp += other * -1.0;
}
Matrix *operator*=(const Matrix &other)
{
// check multiplication prerequisite: this.columns == other.rows
if(!isMCompatible(other)) return &this;
// declare temporary matrix for calculations
// with resulting size this.rows * other.columns
Matrix temp(rows, other.columns);
for(int r = 0; r < temp.rows; ++r)
{
for(int c = 0; c < temp.columns; ++c)
{
double t = 0;
// sum up products of i-th elements
// from r-th row of this and c-th column of other matrices
for(int i = 0; i < columns; ++i)
{
t += m[r * columns + i] * other.m[i * other.columns + c];
}
temp.assign(r, c, t);
}
}
// copy result into current object
this = temp; // call overloaded assignment for current object
return &this;
}
Matrix operator*(const Matrix &other) const
{
Matrix temp(this);
return temp *= other;
}
Matrix *operator*=(const double v)
{
for(int i = 0; i < ArraySize(m); ++i)
{
m[i] *= v;
}
return &this;
}
Matrix operator*(const double v) const
{
Matrix temp(this);
return temp *= v;
}
bool operator==(const Matrix &other) const
{
return ArrayCompare(m, other.m) == 0;
}
bool operator!=(const Matrix &other) const
{
return !(this == other);
}
void print() const
{
ArrayPrint(m);
}
};
//+------------------------------------------------------------------+
//| Helper identity matrix class |
//+------------------------------------------------------------------+
class MatrixIdentity : public Matrix
{
public:
MatrixIdentity(const int n) : Matrix(n, n)
{
for(int i = 0; i < n; ++i)
{
m[i * rows + i] = 1;
}
}
};
//+------------------------------------------------------------------+
//| Script program start function |
//+------------------------------------------------------------------+
void OnStart()
{
Matrix m(2, 3), n(3, 2);
MatrixIdentity p(2);
double ma[] = {-1, 0, -3,
4, -5, 6};
double na[] = {7, 8,
9, 1,
2, 3};
m = ma;
n = na;
m[0][0] = m[0][(uint)0] + 2; // can read and write matrix elements
m[0][1] = ~m[0][1] + 2; // equivalent
Matrix r = m * n + p; // expression
Matrix r2 = m.operator*(n).operator+(p); // equivalent
Print(r == r2); // true
m.print(); // 1.00000 2.00000 -3.00000 4.00000 -5.00000 6.00000
n.print(); // 7.00000 8.00000 9.00000 1.00000 2.00000 3.00000
r.print(); // 20.00000 1.00000 -5.00000 46.00000
}
//+------------------------------------------------------------------+