399 lines
10 KiB
MQL5
399 lines
10 KiB
MQL5
//+------------------------------------------------------------------+
|
|
//| Matrix.mqh |
|
|
//| Copyright 2021, MetaQuotes Ltd. |
|
|
//| https://www.mql5.com |
|
|
//+------------------------------------------------------------------+
|
|
|
|
enum ENUM_ERR_USER_MATRIX
|
|
{
|
|
ERR_USER_MATRIX_OK = 0,
|
|
ERR_USER_MATRIX_EMPTY = 1,
|
|
ERR_USER_MATRIX_SINGULAR = 2,
|
|
ERR_USER_MATRIX_NOT_SQUARE = 3
|
|
};
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Matrix class with operator overloads |
|
|
//+------------------------------------------------------------------+
|
|
class Matrix
|
|
{
|
|
protected:
|
|
double m[];
|
|
int rows;
|
|
int columns;
|
|
|
|
// check matrix compatibility for summation
|
|
bool isCompatible(const Matrix &other)
|
|
{
|
|
const bool check = rows == other.rows && columns == other.columns;
|
|
if(!check) Print("Check failed: matrices must be of the same sizes");
|
|
return check;
|
|
}
|
|
|
|
// check matrix compatibility for multiplication
|
|
bool isMCompatible(const Matrix &other)
|
|
{
|
|
const bool check = columns == other.rows;
|
|
if(!check) Print("Check failed: this.columns should be equal to other.rows");
|
|
return check;
|
|
}
|
|
|
|
void assign(const int r, const int c, const double v)
|
|
{
|
|
m[r * columns + c] = v;
|
|
}
|
|
|
|
public:
|
|
Matrix(const Matrix &other) : rows(other.rows), columns(other.columns)
|
|
{
|
|
ArrayCopy(m, other.m);
|
|
if(rows <= 0 || columns <= 0)
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_EMPTY);
|
|
}
|
|
}
|
|
|
|
Matrix(const int r, const int c) : rows(r), columns(c)
|
|
{
|
|
if(rows <= 0 || columns <= 0)
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_EMPTY);
|
|
}
|
|
else
|
|
{
|
|
ArrayResize(m, rows * columns);
|
|
ArrayInitialize(m, 0);
|
|
}
|
|
}
|
|
|
|
class MatrixRow
|
|
{
|
|
protected:
|
|
const Matrix *owner;
|
|
const int row;
|
|
|
|
public:
|
|
class MatrixElement
|
|
{
|
|
protected:
|
|
const MatrixRow *row;
|
|
const int column;
|
|
|
|
public:
|
|
MatrixElement(const MatrixRow &mr, const int c) : row(&mr), column(c) { }
|
|
MatrixElement(const MatrixElement &other) : row(other.row), column(other.column) { }
|
|
|
|
// return value of this element as double
|
|
double operator~() const
|
|
{
|
|
return row.owner.m[row.row * row.owner.columns + column];
|
|
}
|
|
|
|
// assign double value to this element
|
|
double operator=(const double v)
|
|
{
|
|
row.owner.m[row.row * row.owner.columns + column] = v;
|
|
return v;
|
|
}
|
|
};
|
|
|
|
MatrixRow(const Matrix &m, const int r) : owner(&m), row(r) { }
|
|
MatrixRow(const MatrixRow &other) : owner(other.owner), row(other.row) { }
|
|
|
|
// access matrix element as object to allow subsequent edition/assignment
|
|
// note the type of index is int
|
|
MatrixElement operator[](int c)
|
|
{
|
|
return MatrixElement(this, c);
|
|
}
|
|
|
|
// access matrix element as double value for immediate reading
|
|
// note the type of index is uint
|
|
double operator[](uint c) const
|
|
{
|
|
return owner.m[row * owner.columns + c];
|
|
}
|
|
};
|
|
|
|
|
|
Matrix *operator=(const double &a[])
|
|
{
|
|
if(ArraySize(a) == ArraySize(m))
|
|
{
|
|
ArrayCopy(m, a);
|
|
}
|
|
return &this;
|
|
}
|
|
|
|
Matrix *operator=(const Matrix &other) // optional, required for builds pre-2715
|
|
{
|
|
ArrayCopy(m, other.m);
|
|
ArrayResize(m, ArraySize(other.m));
|
|
rows = other.rows;
|
|
columns = other.columns;
|
|
return &this;
|
|
}
|
|
|
|
MatrixRow operator[](int r) const
|
|
{
|
|
return MatrixRow(this, r);
|
|
}
|
|
|
|
Matrix *operator+=(const Matrix &other)
|
|
{
|
|
if(!isCompatible(other)) return &this;
|
|
for(int i = 0; i < rows * columns; ++i)
|
|
{
|
|
m[i] += other.m[i];
|
|
}
|
|
return &this;
|
|
}
|
|
|
|
Matrix operator+(const Matrix &other) const
|
|
{
|
|
Matrix temp(this);
|
|
return temp += other;
|
|
}
|
|
|
|
Matrix operator-(const Matrix &other) const
|
|
{
|
|
Matrix temp(this);
|
|
return temp += other * -1.0;
|
|
}
|
|
|
|
Matrix *operator*=(const Matrix &other)
|
|
{
|
|
// check multiplication prerequisite: this.columns == other.rows
|
|
if(!isMCompatible(other)) return &this;
|
|
|
|
// declare temporary matrix for calculations
|
|
// with resulting size this.rows * other.columns
|
|
Matrix temp(rows, other.columns);
|
|
|
|
for(int r = 0; r < temp.rows; ++r)
|
|
{
|
|
for(int c = 0; c < temp.columns; ++c)
|
|
{
|
|
double t = 0;
|
|
// sum up products of i-th elements
|
|
// from r-th row of this and c-th column of other matrices
|
|
for(int i = 0; i < columns; ++i)
|
|
{
|
|
t += m[r * columns + i] * other.m[i * other.columns + c];
|
|
}
|
|
temp.assign(r, c, t);
|
|
}
|
|
}
|
|
// copy result into current object
|
|
this = temp; // call overloaded assignment for current object
|
|
return &this;
|
|
}
|
|
|
|
Matrix operator*(const Matrix &other) const
|
|
{
|
|
Matrix temp(this);
|
|
return temp *= other;
|
|
}
|
|
|
|
Matrix *operator*=(const double v)
|
|
{
|
|
for(int i = 0; i < ArraySize(m); ++i)
|
|
{
|
|
m[i] *= v;
|
|
}
|
|
return &this;
|
|
}
|
|
|
|
Matrix operator*(const double v) const
|
|
{
|
|
Matrix temp(this);
|
|
return temp *= v;
|
|
}
|
|
|
|
bool operator==(const Matrix &other) const
|
|
{
|
|
return ArrayCompare(m, other.m) == 0;
|
|
}
|
|
|
|
bool operator!=(const Matrix &other) const
|
|
{
|
|
return !(this == other);
|
|
}
|
|
|
|
void print() const
|
|
{
|
|
for(int i = 0; i < rows; ++i)
|
|
{
|
|
ArrayPrint(m, _Digits, NULL, i * columns, columns, 0);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
T transpose() const
|
|
{
|
|
T result(columns, rows);
|
|
for(int i = 0; i < rows; ++i)
|
|
{
|
|
for(int j = 0; j < columns; ++j)
|
|
{
|
|
result[j][i] = this[i][(uint)j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static ENUM_ERR_USER_MATRIX lastError()
|
|
{
|
|
if(_LastError >= ERR_USER_ERROR_FIRST)
|
|
{
|
|
return (ENUM_ERR_USER_MATRIX)(_LastError - ERR_USER_ERROR_FIRST);
|
|
}
|
|
return (ENUM_ERR_USER_MATRIX)_LastError;
|
|
}
|
|
};
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Helper square matrix class |
|
|
//+------------------------------------------------------------------+
|
|
class MatrixSquare : public Matrix
|
|
{
|
|
public:
|
|
MatrixSquare(const int n, const int _ = -1) : Matrix(n, n)
|
|
{
|
|
if(_ != -1 && _ != n)
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_NOT_SQUARE);
|
|
}
|
|
}
|
|
MatrixSquare(const MatrixSquare &other) : Matrix(other.rows, other.rows)
|
|
{
|
|
ArrayCopy(m, other.m);
|
|
}
|
|
MatrixSquare(const double &array[]) : Matrix((int)sqrt(ArraySize(array)), (int)sqrt(ArraySize(array)))
|
|
{
|
|
if(rows * columns == ArraySize(array))
|
|
{
|
|
this = array;
|
|
}
|
|
else
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_NOT_SQUARE);
|
|
}
|
|
}
|
|
|
|
// Recursive function for determinant calculation
|
|
double determinant() const
|
|
{
|
|
double result = 0.0;
|
|
if(rows == 0)
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_EMPTY);
|
|
return 0;
|
|
}
|
|
else if(rows == 1)
|
|
{
|
|
return m[0];
|
|
}
|
|
else if(rows == 2)
|
|
{
|
|
// for matrix 2x2 do it crosswise,
|
|
result = m[0] * m[3] - m[2] * m[1];
|
|
}
|
|
else
|
|
{
|
|
// otherwise extract corresponding minors and
|
|
// find their determinats by the same method
|
|
for(int i = 0; i < columns; ++i)
|
|
{
|
|
// since decomposition is always performed by the 1-st row with index 0
|
|
// we can check oddity of the column index only
|
|
result += (1 - 2 * (i % 2)) * m[i] * getMinor(0, i).determinant();
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MatrixSquare complement() const
|
|
{
|
|
MatrixSquare result(rows);
|
|
for(int i = 0; i < rows; ++i)
|
|
{
|
|
for(int j = 0; j < columns; ++j)
|
|
{
|
|
result[i][j] = (1 - 2 * ((i + j) % 2)) * getMinor(i, j).determinant();
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
MatrixSquare inverse() const
|
|
{
|
|
MatrixSquare result(rows);
|
|
const double d = determinant();
|
|
if(fabs(d) > DBL_EPSILON)
|
|
{
|
|
result = complement().transpose<MatrixSquare>() * (1 / d);
|
|
}
|
|
else
|
|
{
|
|
SetUserError(ERR_USER_MATRIX_SINGULAR);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
MatrixSquare operator!() const
|
|
{
|
|
return inverse();
|
|
}
|
|
|
|
// Get required minor for the current matrix,
|
|
// and given column/row indices to exclude
|
|
MatrixSquare getMinor(const int row, const int column) const
|
|
{
|
|
const int size = rows - 1;
|
|
MatrixSquare minor(size);
|
|
int di = 0; // variables to skip the column/row
|
|
int dj = 0;
|
|
for(int i = 0; i <= size; ++i)
|
|
{
|
|
if(i == row)
|
|
{
|
|
di = 1;
|
|
continue;
|
|
}
|
|
dj = 0;
|
|
for(int j = 0; j <= size; ++j)
|
|
{
|
|
if(j == column)
|
|
{
|
|
dj = 1;
|
|
}
|
|
else
|
|
{
|
|
minor.m[(i - di) * size + j - dj] = m[i * columns + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return minor;
|
|
}
|
|
};
|
|
|
|
//+------------------------------------------------------------------+
|
|
//| Helper identity matrix class |
|
|
//+------------------------------------------------------------------+
|
|
class MatrixIdentity : public MatrixSquare
|
|
{
|
|
public:
|
|
MatrixIdentity(const int n) : MatrixSquare(n)
|
|
{
|
|
for(int i = 0; i < n; ++i)
|
|
{
|
|
m[i * rows + i] = 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
//+------------------------------------------------------------------+
|