131 lines
No EOL
9 KiB
Python
131 lines
No EOL
9 KiB
Python
# -------------------------------------------------------#
|
|
# Template for creating and testing different models of #
|
|
# neural networks using the same dataset. #
|
|
# When training models, from training dataset, script #
|
|
# allocates 10% to validate the outputs. #
|
|
# After training, the script tests the performance #
|
|
# of the model on a test dataset (separate data file) #
|
|
# -------------------------------------------------------#
|
|
# Import Libraries
|
|
import os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow import keras
|
|
import matplotlib as mp
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.font_manager as fm
|
|
import MetaTrader5 as mt5
|
|
|
|
# Add fonts
|
|
font_list=fm.findSystemFonts()
|
|
for f in font_list:
|
|
if(f.__contains__('ClearSans')):
|
|
fm.fontManager.addfont(f)
|
|
|
|
# Set parameters for output graphs
|
|
mp.rcParams.update({'font.family':'serif',
|
|
'font.serif':'Clear Sans',
|
|
'axes.titlesize': 'x-large',
|
|
'axes.labelsize':'medium',
|
|
'xtick.labelsize':'small',
|
|
'ytick.labelsize':'small',
|
|
'legend.fontsize':'small',
|
|
'figure.figsize':[6.0,4.0],
|
|
'axes.titlecolor': '#707070',
|
|
'axes.labelcolor': '#707070',
|
|
'axes.edgecolor': '#707070',
|
|
'xtick.labelcolor': '#707070',
|
|
'ytick.labelcolor': '#707070',
|
|
'xtick.color': '#707070',
|
|
'ytick.color': '#707070',
|
|
'text.color': '#707070',
|
|
'lines.linewidth': 0.8,
|
|
'axes.linewidth': 0.5
|
|
})
|
|
|
|
# connect to the MetaTrader 5 terminal
|
|
if not mt5.initialize():
|
|
print("initialize() failed, error code =",mt5.last_error())
|
|
quit()
|
|
|
|
# request the path to the sandbox
|
|
path=os.path.join(mt5.terminal_info().data_path,r'MQL5\Files')
|
|
mt5.shutdown()
|
|
|
|
# Load training dataset
|
|
filename = os.path.join(path,'study_data.csv')
|
|
data = np.asarray( pd.read_table(filename,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
|
|
# Split training dataset to input data and target
|
|
inputs=data.shape[1]-2
|
|
targerts=2
|
|
train_data=data[:,0:inputs]
|
|
train_target=data[:,inputs:]
|
|
|
|
# create a neural network model
|
|
model = keras.Sequential([keras.layers.InputLayer(input_shape=inputs),
|
|
# Fill the model with a description of the neural layers
|
|
])
|
|
model.compile(optimizer='Adam',
|
|
loss='mean_squared_error',
|
|
metrics=['accuracy'])
|
|
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5)
|
|
history = model.fit(train_data, train_target,
|
|
epochs=500, batch_size=1000,
|
|
callbacks=[callback],
|
|
verbose=2,
|
|
validation_split=0.1,
|
|
shuffle=True)
|
|
|
|
# save the trained model
|
|
model.save(os.path.join(path,'model.h5'))
|
|
|
|
# plot model training results
|
|
plt.plot(history.history['loss'], label='Train')
|
|
plt.plot(history.history['val_loss'], label='Validation')
|
|
plt.ylabel('$MSE$ $Loss$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics')
|
|
plt.legend(loc='upper right')
|
|
|
|
plt.figure()
|
|
plt.plot(history.history['accuracy'], label='Train')
|
|
plt.plot(history.history['val_accuracy'], label='Validation')
|
|
plt.ylabel('$Accuracy$')
|
|
plt.xlabel('$Epochs$')
|
|
plt.title('Model training dynamics')
|
|
plt.legend(loc='lower right')
|
|
|
|
# Load testing dataset
|
|
test_filename = os.path.join(path,'test_data.csv')
|
|
test = np.asarray( pd.read_table(test_filename,
|
|
sep=',',
|
|
header=None,
|
|
skipinitialspace=True,
|
|
encoding='utf-8',
|
|
float_precision='high',
|
|
dtype=np.float64,
|
|
low_memory=False))
|
|
|
|
# Split test dataset to input data and target
|
|
test_data=test[:,0:inputs]
|
|
test_target=test[:,inputs:]
|
|
|
|
# check model results on a test dataset
|
|
test_loss, test_acc = model.evaluate(test_data, test_target)
|
|
|
|
# Log testing results
|
|
print('Model in test')
|
|
print('Test accuracy:', test_acc)
|
|
print('Test loss:', test_loss)
|
|
|
|
# output of graphs
|
|
plt.show() |