forked from Princeec13/mql5
283 lines
13 KiB
MQL5
283 lines
13 KiB
MQL5
#include <Files/File.mqh>
|
|
|
|
class CStrategySelector
|
|
{
|
|
private:
|
|
// Slice metrics
|
|
string m_strat[];
|
|
string m_sym[];
|
|
int m_tf[];
|
|
int m_cnt[];
|
|
double m_wr[];
|
|
double m_avgR[];
|
|
double m_pf[];
|
|
double m_dd[];
|
|
|
|
// Data presence flag (for cold-start pass-through)
|
|
bool m_has_data;
|
|
|
|
// Selector strictness: when true, apply hard thresholds inside Score(); otherwise gate in Insights_Allow only
|
|
bool strict_thresholds;
|
|
|
|
// Thresholds
|
|
int th_min_trades;
|
|
double th_min_wr;
|
|
double th_min_exp;
|
|
double th_min_pf;
|
|
double th_max_dd;
|
|
|
|
// Weights
|
|
double w_pf, w_exp, w_wr, w_dd;
|
|
|
|
// Recency weighting
|
|
bool use_recency; int recent_days; double rec_alpha;
|
|
// Recent overlays (parallel arrays to main slices)
|
|
int m_rc_cnt[]; double m_rc_wr[]; double m_rc_avgR[]; double m_rc_pf[];
|
|
|
|
string TrimCopy(string s){ StringTrimLeft(s); StringTrimRight(s); return s; }
|
|
|
|
public:
|
|
CStrategySelector()
|
|
{
|
|
th_min_trades = 20; th_min_wr = 0.50; th_min_exp = 0.0; th_min_pf = 2.0; th_max_dd = 6.0;
|
|
w_pf = 1.0; w_exp = 1.0; w_wr = 0.5; w_dd = 0.3;
|
|
use_recency=false; recent_days=14; rec_alpha=0.5;
|
|
m_has_data=false;
|
|
strict_thresholds=false;
|
|
}
|
|
|
|
void ConfigureThresholds(const int min_trades, const double min_wr, const double min_exp, const double min_pf, const double max_dd)
|
|
{ th_min_trades=min_trades; th_min_wr=min_wr; th_min_exp=min_exp; th_min_pf=min_pf; th_max_dd=max_dd; }
|
|
void ConfigureWeights(const double wp, const double we, const double ww, const double wd)
|
|
{ w_pf=wp; w_exp=we; w_wr=ww; w_dd=wd; }
|
|
void ConfigureRecency(const bool useRecency, const int lookbackDays, const double alpha)
|
|
{ use_recency=useRecency; recent_days=lookbackDays; rec_alpha=alpha; }
|
|
|
|
bool Load()
|
|
{
|
|
int h = FileOpen("DualEA\\insights.json", FILE_READ|FILE_TXT|FILE_COMMON|FILE_ANSI);
|
|
if(h==INVALID_HANDLE) return false;
|
|
ArrayResize(m_strat,0); ArrayResize(m_sym,0); ArrayResize(m_tf,0);
|
|
ArrayResize(m_cnt,0); ArrayResize(m_wr,0); ArrayResize(m_avgR,0); ArrayResize(m_pf,0); ArrayResize(m_dd,0);
|
|
while(!FileIsEnding(h))
|
|
{
|
|
string line = FileReadString(h);
|
|
if(line=="" && FileIsEnding(h)) break;
|
|
if(StringFind(line, "\"strategy\"", 0) < 0) continue;
|
|
// parse simple JSON line for slice fields
|
|
string sname="", yname=""; int tfv=0, cnt=0; double wr=0, avgR=0, pf=0, dd=0;
|
|
int p=0;
|
|
p = StringFind(line, "\"strategy\":", 0); if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ sname=TrimCopy(StringSubstr(seg, c+1)); StringReplace(sname, "\"", ""); } }
|
|
p = StringFind(line, "\"symbol\":", 0); if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ yname=TrimCopy(StringSubstr(seg, c+1)); StringReplace(yname, "\"", ""); } }
|
|
p = StringFind(line, "\"timeframe\":",0); if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); tfv=(int)StringToInteger(num);} }
|
|
p = StringFind(line, "\"trade_count\":",0);if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); cnt=(int)StringToInteger(num);} }
|
|
p = StringFind(line, "\"win_rate\":",0); if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); wr=StringToDouble(num);} }
|
|
p = StringFind(line, "\"avg_R\":",0); if(p>=0){ int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); avgR=StringToDouble(num);} }
|
|
p = StringFind(line, "\"profit_factor\":",0);if(p>=0){int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); pf=StringToDouble(num);} }
|
|
p = StringFind(line, "\"max_drawdown_R\":",0);if(p>=0){int q=StringFind(line, ",", p+1); string seg=(q>p? StringSubstr(line,p,q-p):StringSubstr(line,p)); int c=StringFind(seg, ":", 0); if(c>=0){ string num=TrimCopy(StringSubstr(seg,c+1)); dd=StringToDouble(num);} }
|
|
if(sname!="" && yname!="" && tfv>0)
|
|
{
|
|
int n = ArraySize(m_strat);
|
|
ArrayResize(m_strat,n+1); ArrayResize(m_sym,n+1); ArrayResize(m_tf,n+1);
|
|
ArrayResize(m_cnt,n+1); ArrayResize(m_wr,n+1); ArrayResize(m_avgR,n+1); ArrayResize(m_pf,n+1); ArrayResize(m_dd,n+1);
|
|
m_strat[n]=sname; m_sym[n]=yname; m_tf[n]=tfv; m_cnt[n]=cnt; m_wr[n]=wr; m_avgR[n]=avgR; m_pf[n]=pf; m_dd[n]=dd;
|
|
}
|
|
}
|
|
FileClose(h);
|
|
// initialize recent arrays to defaults
|
|
int n=ArraySize(m_strat);
|
|
m_has_data = (n>0);
|
|
ArrayResize(m_rc_cnt,n); ArrayInitialize(m_rc_cnt,0);
|
|
ArrayResize(m_rc_wr,n); ArrayInitialize(m_rc_wr,0.0);
|
|
ArrayResize(m_rc_avgR,n);ArrayInitialize(m_rc_avgR,0.0);
|
|
ArrayResize(m_rc_pf,n); ArrayInitialize(m_rc_pf,0.0);
|
|
return ArraySize(m_strat)>0;
|
|
}
|
|
|
|
bool LoadRecent()
|
|
{
|
|
if(!use_recency) return false;
|
|
int h = FileOpen("DualEA\\features.csv", FILE_READ|FILE_TXT|FILE_COMMON|FILE_ANSI);
|
|
if(h==INVALID_HANDLE) return false;
|
|
datetime now = TimeCurrent();
|
|
datetime cutoff = now - recent_days*24*60*60;
|
|
// Build accumulators per slice index
|
|
int n=ArraySize(m_strat);
|
|
double pos_sum[]; double neg_sum[]; double total_trades[]; double wins[]; double sumR[];
|
|
ArrayResize(pos_sum,n); ArrayInitialize(pos_sum,0.0);
|
|
ArrayResize(neg_sum,n); ArrayInitialize(neg_sum,0.0);
|
|
ArrayResize(total_trades,n); ArrayInitialize(total_trades,0.0);
|
|
ArrayResize(wins,n); ArrayInitialize(wins,0.0);
|
|
ArrayResize(sumR,n); ArrayInitialize(sumR,0.0);
|
|
|
|
while(!FileIsEnding(h))
|
|
{
|
|
string line = FileReadString(h);
|
|
if(line=="" && FileIsEnding(h)) break;
|
|
// Expect CSV: ts,symbol,strategy,key,value
|
|
int p0 = StringFind(line, ",", 0); if(p0<0) continue; string ts = StringSubstr(line,0,p0);
|
|
int p1 = StringFind(line, ",", p0+1); if(p1<0) continue; string sym = StringSubstr(line,p0+1,p1-p0-1);
|
|
int p2 = StringFind(line, ",", p1+1); if(p2<0) continue; string strat = StringSubstr(line,p1+1,p2-p1-1);
|
|
int p3 = StringFind(line, ",", p2+1); if(p3<0) continue; string key = StringSubstr(line,p2+1,p3-p2-1);
|
|
string val = StringSubstr(line,p3+1);
|
|
StringTrimLeft(sym); StringTrimRight(sym); StringTrimLeft(strat); StringTrimRight(strat); StringTrimLeft(key); StringTrimRight(key);
|
|
datetime t = (datetime)StringToTime(ts);
|
|
if(t<cutoff) continue;
|
|
if(StringCompare(key,"r_multiple")!=0) continue;
|
|
double r = StringToDouble(val);
|
|
// find index of slice by symbol/strategy and timeframe is unknown in features.csv; approximate by current timeframe of EA symbol
|
|
for(int i=0;i<n;++i)
|
|
{
|
|
if(m_sym[i]==sym && m_strat[i]==strat)
|
|
{
|
|
total_trades[i] += 1.0;
|
|
sumR[i] += r;
|
|
if(r>0) pos_sum[i]+=r; else if(r<0) neg_sum[i]+=r;
|
|
if(r>0) wins[i]+=1.0;
|
|
}
|
|
}
|
|
}
|
|
FileClose(h);
|
|
for(int i=0;i<n;++i)
|
|
{
|
|
if(total_trades[i]<=0) continue;
|
|
double rc_wr = wins[i]/total_trades[i];
|
|
double rc_avgR = sumR[i]/total_trades[i];
|
|
double rc_pf = (pos_sum[i]>0 && neg_sum[i]<0? pos_sum[i]/MathAbs(neg_sum[i]) : 0.0);
|
|
m_rc_cnt[i] = (int)total_trades[i];
|
|
m_rc_wr[i] = rc_wr;
|
|
m_rc_avgR[i] = rc_avgR;
|
|
m_rc_pf[i] = rc_pf;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
double Score(const string symbol, const int timeframe, const string strategy)
|
|
{
|
|
// Cold-start: if no insights slices loaded, allow pass-through to generate data
|
|
if(ArraySize(m_strat)==0 || !m_has_data)
|
|
{
|
|
return 1.0; // neutral positive score; no thresholds applied
|
|
}
|
|
for(int i=0;i<ArraySize(m_strat);++i)
|
|
{
|
|
if(m_strat[i]==strategy && m_sym[i]==symbol && m_tf[i]==timeframe)
|
|
{
|
|
if(strict_thresholds)
|
|
{
|
|
if(m_cnt[i] < th_min_trades) return 0.0;
|
|
if(m_wr[i] < th_min_wr) return 0.0;
|
|
if(m_avgR[i]< th_min_exp) return 0.0;
|
|
if(m_pf[i] < th_min_pf) return 0.0;
|
|
if(m_dd[i] > th_max_dd) return 0.0;
|
|
}
|
|
double pf = m_pf[i];
|
|
double avgR = m_avgR[i];
|
|
double wr = m_wr[i];
|
|
if(use_recency && i<ArraySize(m_rc_pf))
|
|
{
|
|
if(m_rc_cnt[i]>0)
|
|
{
|
|
pf = (1.0-rec_alpha)*pf + rec_alpha*m_rc_pf[i];
|
|
avgR = (1.0-rec_alpha)*avgR + rec_alpha*m_rc_avgR[i];
|
|
wr = (1.0-rec_alpha)*wr + rec_alpha*m_rc_wr[i];
|
|
}
|
|
}
|
|
double s = w_pf*pf + w_exp*avgR + w_wr*wr - w_dd*m_dd[i];
|
|
if(!strict_thresholds && m_cnt[i] < th_min_trades)
|
|
{
|
|
double scale = (double)m_cnt[i] / (double)MathMax(1, th_min_trades);
|
|
s *= scale;
|
|
}
|
|
return s;
|
|
}
|
|
}
|
|
// Fallback 1: aggregate by strategy+symbol across all timeframes
|
|
int total=0; double sumR=0.0, wins=0.0, gp=0.0, gl=0.0; double dd_series[];
|
|
for(int j=0;j<ArraySize(m_strat);++j)
|
|
if(m_strat[j]==strategy && m_sym[j]==symbol)
|
|
{
|
|
total += m_cnt[j];
|
|
sumR += m_avgR[j]*m_cnt[j];
|
|
wins += m_wr[j]*m_cnt[j];
|
|
if(m_pf[j]>0 && m_pf[j]<9999){ // approximate gp/gl from pf and avgR if possible
|
|
// Not exact; use pf as weighting only in final score. For thresholds use aggregated avg/wr only.
|
|
}
|
|
int k = ArraySize(dd_series); ArrayResize(dd_series,k+1); dd_series[k]=m_avgR[j]; // proxy for series; conservative
|
|
}
|
|
if(total>0)
|
|
{
|
|
double wr = wins/total;
|
|
double avgR = sumR/total;
|
|
double pf = 0.0; // unknown reliably from aggregates; approximate via weighted mean of pf
|
|
double pf_sum=0.0; int pf_cnt=0; for(int q=0;q<ArraySize(m_strat);++q){ if(m_strat[q]==strategy && m_sym[q]==symbol){ pf_sum+=m_pf[q]; pf_cnt++; } }
|
|
if(pf_cnt>0) pf = pf_sum/pf_cnt;
|
|
double dd = 0.0; // drawdown proxy not reliable without series; use worst of slices
|
|
for(int q=0;q<ArraySize(m_strat);++q){ if(m_strat[q]==strategy && m_sym[q]==symbol && m_dd[q]>dd) dd=m_dd[q]; }
|
|
if(strict_thresholds)
|
|
{
|
|
if(total < th_min_trades) return 0.0;
|
|
if(wr < th_min_wr) return 0.0;
|
|
if(avgR< th_min_exp) return 0.0;
|
|
if(pf < th_min_pf) return 0.0;
|
|
if(dd > th_max_dd) return 0.0;
|
|
}
|
|
double s = w_pf*pf + w_exp*avgR + w_wr*wr - w_dd*dd;
|
|
if(!strict_thresholds && total < th_min_trades)
|
|
{
|
|
double scale = (double)total / (double)MathMax(1, th_min_trades);
|
|
s *= scale;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// Fallback 2: aggregate by strategy across all symbols/timeframes
|
|
total=0; sumR=0.0; wins=0.0; double pf_sum2=0.0; int pf_cnt2=0; double worst_dd=0.0;
|
|
for(int j=0;j<ArraySize(m_strat);++j)
|
|
if(m_strat[j]==strategy)
|
|
{
|
|
total += m_cnt[j];
|
|
sumR += m_avgR[j]*m_cnt[j];
|
|
wins += m_wr[j]*m_cnt[j];
|
|
pf_sum2 += m_pf[j]; pf_cnt2++;
|
|
if(m_dd[j]>worst_dd) worst_dd=m_dd[j];
|
|
}
|
|
if(total>0)
|
|
{
|
|
double wr = wins/total;
|
|
double avgR = sumR/total;
|
|
double pf = (pf_cnt2>0? pf_sum2/pf_cnt2 : 0.0);
|
|
double dd = worst_dd;
|
|
if(strict_thresholds)
|
|
{
|
|
if(total < th_min_trades) return 0.0;
|
|
if(wr < th_min_wr) return 0.0;
|
|
if(avgR< th_min_exp) return 0.0;
|
|
if(pf < th_min_pf) return 0.0;
|
|
if(dd > th_max_dd) return 0.0;
|
|
}
|
|
double s = w_pf*pf + w_exp*avgR + w_wr*wr - w_dd*dd;
|
|
if(!strict_thresholds && total < th_min_trades)
|
|
{
|
|
double scale = (double)total / (double)MathMax(1, th_min_trades);
|
|
s *= scale;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
return 0.0; // unknown slice
|
|
}
|
|
|
|
int PickBest(const string symbol, const int timeframe, string &strategies[], double &out_scores[])
|
|
{
|
|
int best=-1; double bestS=-1e9;
|
|
ArrayResize(out_scores, ArraySize(strategies));
|
|
for(int i=0;i<ArraySize(strategies);++i)
|
|
{
|
|
double s = Score(symbol, timeframe, strategies[i]);
|
|
out_scores[i]=s;
|
|
if(s>bestS){ bestS=s; best=i; }
|
|
}
|
|
return best;
|
|
}
|
|
};
|