markaz_arshy/SMC_SYSTEM_README.md
2025-08-12 14:36:24 +00:00

11 KiB

🎯 Pure Smart Money Concepts (SMC) Trading System

📋 System Overview

Sistem trading berdasarkan konsep Smart Money Concepts (SMC) murni tanpa menggunakan indikator teknikal tradisional. Sistem ini fokus pada:

  • Market Structure Analysis - Analisis struktur pasar (BOS, CHoCH)
  • Liquidity Analysis - Deteksi zona likuiditas (BSL/SSL, Equal Highs/Lows)
  • Order Block Detection - Identifikasi blok order institusional
  • Fair Value Gaps (FVG) - Deteksi gap nilai yang belum terisi
  • Premium/Discount Zones - Zona premium dan discount berdasarkan range

🔧 File Structure

ai_forex_adaptif_rev1/
├── technical_indicators_smc.py    # Core SMC analysis functions
├── analyze_market_smc.py          # Enhanced market analysis with profiles
├── test_smc_analysis.py           # Testing script dengan data real (yfinance)
├── simple_test_smc.py             # Testing script dengan data dummy
└── SMC_SYSTEM_README.md           # Documentation ini

🚀 Quick Start

1. Install Dependencies

pip install pandas numpy scipy yfinance matplotlib

2. Basic Usage

Analisis dengan Data Real

from analyze_market_smc import get_market_context_smc, fetch_data

# Fetch data
df = fetch_data('BTC-USD', period='3mo', interval='1h')

# Analisis SMC untuk swing trading
context = get_market_context_smc(df, profile='swing', symbol='BTCUSD')

print(f"Market Bias: {context['market_bias']}")
print(f"Current Zone: {context['smc_analysis']['premium_discount_zones']['current_zone']}")
print(f"Entry Direction: {context['entry_exit_analysis']['direction']}")

Testing dengan Data Dummy

python simple_test_smc.py

📊 Core SMC Components

1. Market Structure Analysis

from technical_indicators_smc import analyze_market_structure

structure = analyze_market_structure(df, swing_length=5)
print(f"Trend: {structure['trend_direction']}")
print(f"BOS Detected: {structure['bos_detected']}")

Output Elements:

  • structure_type: BOS_BULLISH, BOS_BEARISH, atau RANGE
  • trend_direction: BULLISH, BEARISH, atau NEUTRAL
  • bos_detected: True jika Break of Structure terdeteksi
  • structure_strength: Kekuatan struktur (0.0-1.0)

2. Liquidity Zone Detection

from technical_indicators_smc import detect_liquidity_zones

liquidity_zones = detect_liquidity_zones(df, lookback=20)

Types:

  • BSL (Buy Side Liquidity): Di atas swing highs
  • SSL (Sell Side Liquidity): Di bawah swing lows
  • EQH (Equal Highs): Level sama pada swing highs
  • EQL (Equal Lows): Level sama pada swing lows

3. Order Block Detection

from technical_indicators_smc import detect_order_blocks

order_blocks = detect_order_blocks(df, lookback=50)

Types:

  • BULLISH_OB: Candle bearish diikuti breakout bullish
  • BEARISH_OB: Candle bullish diikuti breakout bearish
  • Status: ACTIVE, TESTED, MITIGATED

4. Fair Value Gap (FVG)

from technical_indicators_smc import detect_fair_value_gaps

fvgs = detect_fair_value_gaps(df, min_gap_atr=0.1)

Types:

  • BULLISH_FVG: Gap bullish yang perlu diisi
  • BEARISH_FVG: Gap bearish yang perlu diisi
  • Status: ACTIVE, FILLED

5. Premium/Discount Zones

from technical_indicators_smc import calculate_premium_discount_zones

zones = calculate_premium_discount_zones(df, lookback=100)
print(f"Current Zone: {zones['current_zone']}")

Zones:

  • PREMIUM: Top 20% dari range (sell zone)
  • DISCOUNT: Bottom 20% dari range (buy zone)
  • EQUILIBRIUM: Middle 60% (wait zone)

👤 Trading Profiles

Sistem mendukung 4 profil trading yang berbeda:

1. Scalper Profile

  • Timeframe: M1-M5
  • Focus: FVG retests, quick order block reactions
  • Risk: Medium
  • Speed: Sangat cepat

2. Intraday Profile

  • Timeframe: M15-H1
  • Focus: Liquidity sweeps, session analysis
  • Risk: Medium
  • Session awareness: Ya

3. Swing Profile

  • Timeframe: H1-H4
  • Focus: Structure breaks, CHoCH, high-quality setups
  • Risk: Low
  • Hold time: Beberapa hari

4. Position Profile

  • Timeframe: H4-D1
  • Focus: Major structure shifts, institutional blocks
  • Risk: Very Low
  • Hold time: Minggu/bulan

🔍 Analysis Results

Market Context Output

context = get_market_context_smc(df, profile='swing', symbol='XAUUSD')

Key Fields:

  • market_bias: STRONG_BULLISH, BULLISH, NEUTRAL, BEARISH, STRONG_BEARISH
  • bias_strength: Numerik (0-10+)
  • current_price: Harga saat ini
  • atr: Average True Range
  • risk_assessment: LOW, MEDIUM, HIGH

Entry/Exit Analysis

entry_exit = context['entry_exit_analysis']

Output:

  • direction: BUY, SELL, atau WAIT
  • entry_zones: List zona entry terbaik
  • confidence: Score kepercayaan per zona

Profile-Specific Analysis

profile_analysis = context['profile_analysis']

Output:

  • market_phase: accumulation, markup, distribution, markdown, transition
  • confidence: Persentase confidence
  • entry_signals: List sinyal entry spesifik profil
  • warnings: Peringatan untuk profil tersebut

⚙️ Configuration

Symbol-Specific Settings

SMC_CONFIGS = {
    "XAUUSD": {
        "swing_length": 7,
        "liquidity_lookback": 30,
        "order_block_lookback": 100,
        "min_gap_atr": 0.15,
        "eq_tolerance_pips": 10.0
    },
    "BTCUSD": {
        "swing_length": 5,
        "liquidity_lookback": 20,
        "order_block_lookback": 50,
        "min_gap_atr": 0.08,
        "eq_tolerance_pips": 50.0
    }
}

Spread Rules

SPREAD_RULES = {
    "XAUUSD": {"max_abs": 0.5, "max_rel_atr": 0.25, "smc_sensitivity": 1.2},
    "BTCUSD": {"max_abs": 30.0, "max_rel_atr": 0.12, "smc_sensitivity": 1.0}
}

📈 Backtesting

Run Backtest

from analyze_market_smc import backtest_smc_strategy

results = backtest_smc_strategy(
    df, 
    context, 
    initial_capital=10000,
    risk_per_trade=0.02,
    symbol='BTCUSD'
)

Backtest Results

  • total_pnl: Total profit/loss
  • win_rate: Persentase win rate
  • profit_factor: Ratio profit vs loss
  • smc_strategy_breakdown: Breakdown per tipe sinyal SMC

🎯 Key SMC Signals

1. Break of Structure (BOS)

  • Harga break dari struktur sebelumnya
  • Konfirmasi trend continuation
  • Action: Follow trend direction

2. Change of Character (CHoCH)

  • Perubahan karakter market structure
  • Dari bullish ke bearish atau sebaliknya
  • Action: Prepare untuk trend reversal

3. Liquidity Sweep

  • Harga sweep liquidity zones lalu reversal
  • Tanda smart money action
  • Action: Counter-trend entry

4. Order Block Retest

  • Harga kembali test order block yang belum termitigasi
  • High probability reaction zones
  • Action: Entry sesuai OB direction

5. FVG Fill

  • Harga mengisi Fair Value Gap
  • Magnetic effect ke gap zones
  • Action: Entry saat approach FVG

🔄 Example Workflow

Complete Analysis Workflow

# 1. Fetch data
df = fetch_data('XAUUSD', period='1mo', interval='4h')

# 2. Analisis konteks pasar
context = get_market_context_smc(df, profile='swing', symbol='XAUUSD')

# 3. Check overall bias
print(f"Market Bias: {context['market_bias']}")

# 4. Check SMC elements
smc = context['smc_analysis']
print(f"Structure: {smc['structure']['structure_type']}")
print(f"Active OBs: {len(smc['order_blocks'])}")
print(f"Active FVGs: {len(smc['fair_value_gaps'])}")

# 5. Entry recommendation
entry_exit = context['entry_exit_analysis']
if entry_exit['direction'] != 'WAIT':
    best_zone = entry_exit['entry_zones'][0]
    print(f"Entry: {entry_exit['direction']} at {best_zone['entry_price']}")

# 6. Profile-specific signals
if context.get('profile_analysis'):
    profile = context['profile_analysis']
    print(f"Signals: {len(profile['entry_signals'])}")

# 7. Risk assessment
risk = context['risk_assessment']
print(f"Overall Risk: {risk['overall_risk']}")

⚠️ Important Notes

Risk Management

  • Always validate spread conditions
  • Never ignore risk assessment warnings
  • Position size berdasarkan risk per trade
  • Stop loss mandatory untuk semua trades

Data Requirements

  • Minimum: 50 candles untuk analisis dasar
  • Recommended: 200+ candles untuk akurasi optimal
  • Timeframe: Sesuaikan dengan profil trading

Performance Optimization

  • System dirancang untuk real-time analysis
  • Caching digunakan untuk fungsi berat
  • Error handling comprehensive

🐛 Troubleshooting

Common Issues

1. "Insufficient data" Error

# Solution: Increase data period
df = fetch_data('BTC-USD', period='3mo', interval='1h')  # Lebih panjang

2. No Entry Zones Found

# Check market conditions
if context['smc_analysis']['premium_discount_zones']['current_zone'] == 'EQUILIBRIUM':
    print("Market in equilibrium - wait for clear bias")

3. High Risk Assessment

# Check conflicting signals
bias_components = context['bias_components']
if abs(bias_components['bullish_signals'] - bias_components['bearish_signals']) < 2:
    print("Conflicting signals - avoid trading")

📚 Further Development

Planned Features

  • Multi-timeframe analysis
  • Volume profile integration
  • Real-time alerts
  • Advanced backtesting metrics
  • Machine learning signal validation

Customization Options

  • Adjust SMC sensitivity per symbol
  • Custom trading sessions
  • Enhanced risk metrics
  • Portfolio-level analysis

🤝 Contributing

Sistem ini dapat dikembangkan lebih lanjut dengan:

  1. Additional SMC concepts: Wyckoff integration, volume analysis
  2. Enhanced backtesting: More sophisticated metrics
  3. Real-time features: Live market scanning
  4. Machine learning: Pattern recognition enhancement

System Testing Results

Berdasarkan testing yang telah dilakukan:

  • Core SMC functions working properly
  • All trading profiles functioning correctly
  • Entry/exit recommendations generated successfully
  • Backtesting system operational
  • Multi-symbol support working
  • Risk assessment functioning

📞 Support

Untuk pertanyaan atau bantuan pengembangan lebih lanjut, sistem ini telah dirancang dengan dokumentasi lengkap dan error handling yang komprehensif.

Happy SMC Trading! 🚀📈