11 KiB
11 KiB
🎯 Pure Smart Money Concepts (SMC) Trading System
📋 System Overview
Sistem trading berdasarkan konsep Smart Money Concepts (SMC) murni tanpa menggunakan indikator teknikal tradisional. Sistem ini fokus pada:
- Market Structure Analysis - Analisis struktur pasar (BOS, CHoCH)
- Liquidity Analysis - Deteksi zona likuiditas (BSL/SSL, Equal Highs/Lows)
- Order Block Detection - Identifikasi blok order institusional
- Fair Value Gaps (FVG) - Deteksi gap nilai yang belum terisi
- Premium/Discount Zones - Zona premium dan discount berdasarkan range
🔧 File Structure
ai_forex_adaptif_rev1/
├── technical_indicators_smc.py # Core SMC analysis functions
├── analyze_market_smc.py # Enhanced market analysis with profiles
├── test_smc_analysis.py # Testing script dengan data real (yfinance)
├── simple_test_smc.py # Testing script dengan data dummy
└── SMC_SYSTEM_README.md # Documentation ini
🚀 Quick Start
1. Install Dependencies
pip install pandas numpy scipy yfinance matplotlib
2. Basic Usage
Analisis dengan Data Real
from analyze_market_smc import get_market_context_smc, fetch_data
# Fetch data
df = fetch_data('BTC-USD', period='3mo', interval='1h')
# Analisis SMC untuk swing trading
context = get_market_context_smc(df, profile='swing', symbol='BTCUSD')
print(f"Market Bias: {context['market_bias']}")
print(f"Current Zone: {context['smc_analysis']['premium_discount_zones']['current_zone']}")
print(f"Entry Direction: {context['entry_exit_analysis']['direction']}")
Testing dengan Data Dummy
python simple_test_smc.py
📊 Core SMC Components
1. Market Structure Analysis
from technical_indicators_smc import analyze_market_structure
structure = analyze_market_structure(df, swing_length=5)
print(f"Trend: {structure['trend_direction']}")
print(f"BOS Detected: {structure['bos_detected']}")
Output Elements:
structure_type
: BOS_BULLISH, BOS_BEARISH, atau RANGEtrend_direction
: BULLISH, BEARISH, atau NEUTRALbos_detected
: True jika Break of Structure terdeteksistructure_strength
: Kekuatan struktur (0.0-1.0)
2. Liquidity Zone Detection
from technical_indicators_smc import detect_liquidity_zones
liquidity_zones = detect_liquidity_zones(df, lookback=20)
Types:
- BSL (Buy Side Liquidity): Di atas swing highs
- SSL (Sell Side Liquidity): Di bawah swing lows
- EQH (Equal Highs): Level sama pada swing highs
- EQL (Equal Lows): Level sama pada swing lows
3. Order Block Detection
from technical_indicators_smc import detect_order_blocks
order_blocks = detect_order_blocks(df, lookback=50)
Types:
- BULLISH_OB: Candle bearish diikuti breakout bullish
- BEARISH_OB: Candle bullish diikuti breakout bearish
- Status: ACTIVE, TESTED, MITIGATED
4. Fair Value Gap (FVG)
from technical_indicators_smc import detect_fair_value_gaps
fvgs = detect_fair_value_gaps(df, min_gap_atr=0.1)
Types:
- BULLISH_FVG: Gap bullish yang perlu diisi
- BEARISH_FVG: Gap bearish yang perlu diisi
- Status: ACTIVE, FILLED
5. Premium/Discount Zones
from technical_indicators_smc import calculate_premium_discount_zones
zones = calculate_premium_discount_zones(df, lookback=100)
print(f"Current Zone: {zones['current_zone']}")
Zones:
- PREMIUM: Top 20% dari range (sell zone)
- DISCOUNT: Bottom 20% dari range (buy zone)
- EQUILIBRIUM: Middle 60% (wait zone)
👤 Trading Profiles
Sistem mendukung 4 profil trading yang berbeda:
1. Scalper Profile
- Timeframe: M1-M5
- Focus: FVG retests, quick order block reactions
- Risk: Medium
- Speed: Sangat cepat
2. Intraday Profile
- Timeframe: M15-H1
- Focus: Liquidity sweeps, session analysis
- Risk: Medium
- Session awareness: Ya
3. Swing Profile
- Timeframe: H1-H4
- Focus: Structure breaks, CHoCH, high-quality setups
- Risk: Low
- Hold time: Beberapa hari
4. Position Profile
- Timeframe: H4-D1
- Focus: Major structure shifts, institutional blocks
- Risk: Very Low
- Hold time: Minggu/bulan
🔍 Analysis Results
Market Context Output
context = get_market_context_smc(df, profile='swing', symbol='XAUUSD')
Key Fields:
market_bias
: STRONG_BULLISH, BULLISH, NEUTRAL, BEARISH, STRONG_BEARISHbias_strength
: Numerik (0-10+)current_price
: Harga saat iniatr
: Average True Rangerisk_assessment
: LOW, MEDIUM, HIGH
Entry/Exit Analysis
entry_exit = context['entry_exit_analysis']
Output:
direction
: BUY, SELL, atau WAITentry_zones
: List zona entry terbaikconfidence
: Score kepercayaan per zona
Profile-Specific Analysis
profile_analysis = context['profile_analysis']
Output:
market_phase
: accumulation, markup, distribution, markdown, transitionconfidence
: Persentase confidenceentry_signals
: List sinyal entry spesifik profilwarnings
: Peringatan untuk profil tersebut
⚙️ Configuration
Symbol-Specific Settings
SMC_CONFIGS = {
"XAUUSD": {
"swing_length": 7,
"liquidity_lookback": 30,
"order_block_lookback": 100,
"min_gap_atr": 0.15,
"eq_tolerance_pips": 10.0
},
"BTCUSD": {
"swing_length": 5,
"liquidity_lookback": 20,
"order_block_lookback": 50,
"min_gap_atr": 0.08,
"eq_tolerance_pips": 50.0
}
}
Spread Rules
SPREAD_RULES = {
"XAUUSD": {"max_abs": 0.5, "max_rel_atr": 0.25, "smc_sensitivity": 1.2},
"BTCUSD": {"max_abs": 30.0, "max_rel_atr": 0.12, "smc_sensitivity": 1.0}
}
📈 Backtesting
Run Backtest
from analyze_market_smc import backtest_smc_strategy
results = backtest_smc_strategy(
df,
context,
initial_capital=10000,
risk_per_trade=0.02,
symbol='BTCUSD'
)
Backtest Results
total_pnl
: Total profit/losswin_rate
: Persentase win rateprofit_factor
: Ratio profit vs losssmc_strategy_breakdown
: Breakdown per tipe sinyal SMC
🎯 Key SMC Signals
1. Break of Structure (BOS)
- Harga break dari struktur sebelumnya
- Konfirmasi trend continuation
- Action: Follow trend direction
2. Change of Character (CHoCH)
- Perubahan karakter market structure
- Dari bullish ke bearish atau sebaliknya
- Action: Prepare untuk trend reversal
3. Liquidity Sweep
- Harga sweep liquidity zones lalu reversal
- Tanda smart money action
- Action: Counter-trend entry
4. Order Block Retest
- Harga kembali test order block yang belum termitigasi
- High probability reaction zones
- Action: Entry sesuai OB direction
5. FVG Fill
- Harga mengisi Fair Value Gap
- Magnetic effect ke gap zones
- Action: Entry saat approach FVG
🔄 Example Workflow
Complete Analysis Workflow
# 1. Fetch data
df = fetch_data('XAUUSD', period='1mo', interval='4h')
# 2. Analisis konteks pasar
context = get_market_context_smc(df, profile='swing', symbol='XAUUSD')
# 3. Check overall bias
print(f"Market Bias: {context['market_bias']}")
# 4. Check SMC elements
smc = context['smc_analysis']
print(f"Structure: {smc['structure']['structure_type']}")
print(f"Active OBs: {len(smc['order_blocks'])}")
print(f"Active FVGs: {len(smc['fair_value_gaps'])}")
# 5. Entry recommendation
entry_exit = context['entry_exit_analysis']
if entry_exit['direction'] != 'WAIT':
best_zone = entry_exit['entry_zones'][0]
print(f"Entry: {entry_exit['direction']} at {best_zone['entry_price']}")
# 6. Profile-specific signals
if context.get('profile_analysis'):
profile = context['profile_analysis']
print(f"Signals: {len(profile['entry_signals'])}")
# 7. Risk assessment
risk = context['risk_assessment']
print(f"Overall Risk: {risk['overall_risk']}")
⚠️ Important Notes
Risk Management
- Always validate spread conditions
- Never ignore risk assessment warnings
- Position size berdasarkan risk per trade
- Stop loss mandatory untuk semua trades
Data Requirements
- Minimum: 50 candles untuk analisis dasar
- Recommended: 200+ candles untuk akurasi optimal
- Timeframe: Sesuaikan dengan profil trading
Performance Optimization
- System dirancang untuk real-time analysis
- Caching digunakan untuk fungsi berat
- Error handling comprehensive
🐛 Troubleshooting
Common Issues
1. "Insufficient data" Error
# Solution: Increase data period
df = fetch_data('BTC-USD', period='3mo', interval='1h') # Lebih panjang
2. No Entry Zones Found
# Check market conditions
if context['smc_analysis']['premium_discount_zones']['current_zone'] == 'EQUILIBRIUM':
print("Market in equilibrium - wait for clear bias")
3. High Risk Assessment
# Check conflicting signals
bias_components = context['bias_components']
if abs(bias_components['bullish_signals'] - bias_components['bearish_signals']) < 2:
print("Conflicting signals - avoid trading")
📚 Further Development
Planned Features
- Multi-timeframe analysis
- Volume profile integration
- Real-time alerts
- Advanced backtesting metrics
- Machine learning signal validation
Customization Options
- Adjust SMC sensitivity per symbol
- Custom trading sessions
- Enhanced risk metrics
- Portfolio-level analysis
🤝 Contributing
Sistem ini dapat dikembangkan lebih lanjut dengan:
- Additional SMC concepts: Wyckoff integration, volume analysis
- Enhanced backtesting: More sophisticated metrics
- Real-time features: Live market scanning
- Machine learning: Pattern recognition enhancement
✅ System Testing Results
Berdasarkan testing yang telah dilakukan:
- ✅ Core SMC functions working properly
- ✅ All trading profiles functioning correctly
- ✅ Entry/exit recommendations generated successfully
- ✅ Backtesting system operational
- ✅ Multi-symbol support working
- ✅ Risk assessment functioning
📞 Support
Untuk pertanyaan atau bantuan pengembangan lebih lanjut, sistem ini telah dirancang dengan dokumentasi lengkap dan error handling yang komprehensif.
Happy SMC Trading! 🚀📈